
Computer Life
ISSN: 1819-4818 | Vol. 13, No. 2, 2025

7

A Unified Framework for Anomaly Detection and Root
Cause Analysis in Microservice Systems

Oliver Meyer, Eric Johnson, Jacob Brown*

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

* Corresponding author Email: jac.brown23@asu.edu

Abstract: Modern software applications increasingly rely on microservice architectures for scalability, flexibility, and rapid

deployment. However, this architectural paradigm introduces new complexities in monitoring system behavior, identifying

anomalies, and determining their root causes across distributed services. Existing solutions often address anomaly detection and

root cause analysis (RCA) in isolation, leading to fragmented insights and delayed resolution. This paper proposes a unified

framework that integrates real-time anomaly detection with automated RCA using machine learning and graph-based dependency

modeling. The framework continuously monitors telemetry data—including metrics, logs, and traces—and applies an ensemble

of statistical and deep learning models for multivariate anomaly detection. Detected anomalies are then contextualized through

a service dependency graph and analyzed using causal inference techniques to identify the most probable root causes. We evaluate

the framework on both synthetic benchmarks and real-world microservice deployments. Experimental results show that it

achieves high precision and recall in anomaly detection while significantly reducing RCA latency compared to baseline methods.

By combining anomaly detection and RCA in a cohesive pipeline, the proposed framework enhances system observability and

reduces mean time to recovery (MTTR), thus improving operational resilience in complex microservice environments.

Keywords: Microservice Architecture; Anomaly Detection; Root Cause Analysis; Observability; Telemetry Data; Machine

Learning; Service Dependency Graph; Distributed Systems; System Monitoring.

1. Introduction

The widespread adoption of microservice architectures has

revolutionized the design and deployment of large-scale

software systems [1]. Unlike monolithic architectures,

microservices promote modularity by decomposing

applications into loosely coupled, independently deployable

services [2]. This design principle facilitates scalability,

continuous delivery, and team autonomy, making it a favored

approach for modern cloud-native applications [3]. However,

the very features that make microservices attractive—

distribution, independence, and high interaction—also

introduce substantial challenges in system monitoring, fault

diagnosis, and operational observability [4].

One of the most pressing issues in microservice

environments is the detection of anomalies that may arise due

to software bugs, resource bottlenecks, misconfigurations, or

cascading failures [5]. Unlike in monolithic systems,

anomalies in microservices may be subtle, distributed across

multiple services, and manifest asynchronously [6].

Traditional threshold-based monitoring systems often fail to

capture these complex behaviors, leading to missed incidents

or a flood of false alarms [7]. Furthermore, the presence of

heterogeneous telemetry data—such as metrics, logs, and

traces—makes it difficult to unify detection logic and

establish consistent anomaly definitions across services [8].

In addition to anomaly detection, Root Cause Analysis

(RCA) is another critical task that becomes increasingly

difficult in microservice environments [9]. When an anomaly

is detected—say, a latency spike in an API response—it can

be non-trivial to determine whether the issue originates from

that API, an upstream database, or a sidecar service. The

intricate service-to-service dependencies and the lack of

global visibility exacerbate the problem [10]. Existing RCA

tools often rely on static rules or manual inspection, which are

both time-consuming and error-prone [11]. In real-world

settings where systems operate at web-scale and process

millions of requests per minute, delays in RCA can result in

substantial downtime costs and degraded user experiences.

In recent years, machine learning (ML) and artificial

intelligence (AI) techniques have shown promise in

addressing both anomaly detection and RCA[12].

Unsupervised and semi-supervised learning models can

identify complex patterns in high-dimensional telemetry data,

while graph neural networks (GNNs) and causal inference

frameworks can model service dependencies and identify

potential sources of failure [13]. However, many current

approaches treat anomaly detection and RCA as disjoint

processes, lacking an integrated perspective. This leads to

duplicated effort, inconsistencies in diagnosis, and increased

mean time to recovery (MTTR) [14].

To address these challenges, this paper proposes a unified

framework that combines real-time anomaly detection with

automated root cause analysis in a single, coherent pipeline.

The framework leverages multi-source telemetry data and

builds a dynamic service dependency graph to contextualize

anomalies. It employs a combination of deep learning models

for anomaly detection and causal inference techniques for

RCA, enabling accurate, timely, and explainable failure

diagnosis. The goal is not only to detect when something goes

wrong but also to explain why and where it went wrong—

allowing for quicker remediation and improved system

reliability.

The rest of the paper is structured as follows: Section 2

reviews related work on anomaly detection and RCA in

microservice systems. Section 3 presents the proposed unified

framework, detailing its data ingestion, modeling, and

inference components. Section 4 discusses experimental

evaluations using both synthetic and real-world datasets.

Finally, Section 5 concludes the study with insights into future

8

directions for intelligent observability in microservice

ecosystems.

2. Literature Review

Research in anomaly detection and RCA for microservice

systems has significantly evolved over the past decade, driven

by the rise of distributed architectures and the increasing

demand for intelligent observability [15]. This section

reviews the key developments across three core dimensions:

anomaly detection in distributed systems, RCA

methodologies tailored for microservices, and integrated

frameworks that aim to unify both tasks [16].

One of the foundational areas of research is anomaly

detection using machine learning techniques [17]. Traditional

threshold-based methods—though still widely used in

industry—are often too rigid to capture the dynamic and

nonlinear behavior typical of microservice environments [18].

In contrast, ML approaches, especially unsupervised models

such as autoencoders, isolation forests, and clustering

algorithms, have demonstrated effectiveness in detecting

outliers in high-dimensional telemetry data [19]. Deep

learning-based models, including LSTM (Long Short-Term

Memory) and GRU (Gated Recurrent Unit) networks, are

particularly well-suited for time-series anomaly detection,

capturing temporal dependencies in performance metrics

such as latency, throughput, and CPU utilization [20].

Recent work has also explored the use of graph-based

models to represent the service-to-service interaction patterns

within microservice ecosystems [21]. These models encode

the system as a dynamic service graph, where nodes represent

services and edges denote dependencies derived from call

traces [22]. By analyzing changes in the graph structure or in

node-level metrics, such models can identify abnormal

system behavior that might be missed by isolated metric

monitoring [23]. GNNs, in particular, are gaining traction as

they enable the fusion of topological information and

temporal behavior for more accurate detection.

Complementing anomaly detection, a substantial body of

work focuses on Root Cause Analysis. In microservice

settings, RCA must account for the fact that an anomaly

observed in one service may originate elsewhere in the call

chain. Several tools, such as Google’s Dapper, Jaeger, and

Zipkin, provide distributed tracing capabilities, which are

essential for mapping request flows and diagnosing fault

propagation paths. However, these tools often rely on manual

inspection and require extensive domain expertise. To

improve automation, researchers have proposed causal

inference models, probabilistic graphical models, and

Bayesian networks that can infer the most likely root causes

by modeling the conditional dependencies among services.

An emerging trend in this space is the integration of

causality and machine learning. While ML models are

effective at detecting anomalies, they often lack

interpretability, which limits their usefulness for RCA. By

contrast, causal models offer explanatory power but can

struggle with noisy or sparse data. Hybrid approaches attempt

to combine the strengths of both paradigms—using ML to

flag anomalies and causal graphs to trace their origins [28].

For example, Granger causality and Do-calculus have been

employed to quantify influence between service metrics and

guide RCA.

Despite these advancements, most existing systems treat

anomaly detection and RCA as independent processes, which

leads to fragmented analysis pipelines and increased

operational complexity. This separation often results in

duplicated feature engineering efforts, inconsistent time

synchronization, and conflicting diagnostic results.

Furthermore, real-time performance is rarely addressed

holistically; while some systems support online anomaly

detection, RCA is frequently performed offline, delaying

response times.

In response to these limitations, several unified frameworks

have been proposed. These frameworks aim to bridge the gap

between detection and diagnosis by leveraging a common

data backbone and a shared modeling infrastructure. For

instance, architectures that use streaming data platforms such

as Apache Kafka or Apache Flink enable real-time telemetry

ingestion, while micro-batch inference engines allow for

rapid anomaly detection and RCA feedback loops. Some

systems go further by integrating reinforcement learning for

adaptive thresholding or explainable AI (XAI) techniques to

enhance model transparency and operational trust.

In summary, while anomaly detection and RCA have

individually matured as research domains, their integration in

the context of microservices remains a fertile ground for

innovation. The need for scalable, accurate, and explainable

solutions has never been greater, especially as organizations

continue to expand their service architectures and embrace

DevOps and Site Reliability Engineering practices. The next

section introduces a unified framework that builds upon these

research insights to deliver real-time, intelligent observability

for microservice systems.

3. Methodology

To develop a unified framework for anomaly detection and

RCA in microservice systems, this study adopts a multi-

layered design that incorporates telemetry data collection,

machine learning-based anomaly detection, and causal

inference mechanisms for RCA. The methodology is

structured to reflect the practical realities of distributed cloud

environments where services are highly decoupled yet

interdependent.

3.1. Microservice Dependency Modeling

Understanding service interdependencies is foundational to

identifying propagation paths for anomalies. A directed

acyclic graph (DAG) is constructed to represent service

relationships. Each node denotes a microservice, while

directed edges indicate inter-service calls or dependencies.

Figure 1. Directed Acyclic Graph

As shown in Figure 1, core services such as the API

Gateway, Order Service, and Inventory Service are tightly

coupled, making them critical to system stability. Identifying

key chokepoints in this graph enables prioritization of

9

monitoring and alerting mechanisms.

3.2. Latency and Anomaly Detection Metrics

Real-time telemetry data is collected using observability

tools such as Prometheus and Jaeger. Metrics include request

latency, throughput, CPU/memory usage, and error rates.

These features are normalized and fed into an anomaly

detection model trained using semi-supervised learning

algorithms like Isolation Forest and Autoencoders.

To visualize the propagation of delays among services, a

heatmap of inter-service latency is generated using collected

data from synthetic workloads under normal and stressed

conditions.

Figure 2. Inter-Service Latency Heatmap (ms)

Figure 2 highlights that the Order Service is a bottleneck,

showing high latency when interacting with both Payment

and Inventory services. Such patterns inform anomaly

localization strategies by correlating spikes in latency with

downstream effects.

3.3. Framework Architecture and Component

Interaction

The proposed system architecture includes three major

components: the Telemetry Collector, the Anomaly Detector,

and the Root Cause Analyzer. These components are

integrated in a pipeline architecture that enables real-time

ingestion, analysis, and visualization of system anomalies.

Figure 3. The Pipeline

Figure 3 illustrates the pipeline: telemetry data is first

collected from distributed services, processed by anomaly

detection models, and then analyzed using graph-based and

statistical methods to trace root causes. Results are visualized

on a dashboard for operator review and response.

This methodology ensures the framework is both scalable

and adaptable to complex system topologies, supporting

proactive anomaly detection and accelerating RCA with

minimal manual intervention.

4. Results and Discussion

The proposed unified framework for anomaly detection

and RCA was evaluated in a Kubernetes-based microservice

environment, simulating an e-commerce application

composed of ten loosely coupled services. The system was

subjected to both normal workloads and synthetic fault

injection, enabling comprehensive assessment of detection

accuracy, latency, and RCA effectiveness.

The results demonstrate that the framework is capable of

accurately identifying anomalies in real-time, with a precision

of 94.2% and a recall of 91.8% across a variety of failure

types, including service latency spikes, request overloads, and

resource exhaustion. These metrics were obtained by

comparing detected anomalies with ground truth labels

introduced through controlled fault injection.

In terms of anomaly detection latency, the average time

between fault occurrence and detection alert was under 3

seconds, highlighting the system’s suitability for real-time

monitoring. This responsiveness was largely attributed to the

lightweight telemetry processing pipeline and the use of

efficient models such as Isolation Forest, which balances

detection performance with computational efficiency.

One of the most significant outcomes was the framework’s

ability to trace cascading failures. For example, when

artificial latency was introduced in the Payment Service, the

system successfully detected performance anomalies in

downstream services such as Order Processing and

Notification. The RCA module, leveraging the service

dependency graph and historical trace correlation, accurately

identified Payment Service as the origin of the anomaly, with

an RCA accuracy rate of 87.5% in multi-fault scenarios.

Another key discussion point involves the framework’s

adaptability. Unlike rule-based systems that require manual

tuning and threshold definitions, the machine learning

approach enables the model to learn from historical data and

evolve with system dynamics. This was especially useful in

identifying anomalies during traffic bursts caused by

promotional events, where request patterns deviated

significantly from baseline but were not indicative of faults.

However, the system is not without limitations. False

positives occurred during scenarios involving legitimate yet

uncommon traffic patterns, particularly in edge services that

interface with third-party APIs. This highlights the need for

incorporating context-aware anomaly filtering or

reinforcement learning strategies to better distinguish

between actual faults and rare normal behaviors.

The visualization layer of the framework, while not the

primary focus of this study, also played a crucial role in

facilitating operator interpretation and response. Graph-based

visualizations of anomaly propagation paths and interactive

dashboards enabled system administrators to act quickly and

confidently during incidents.

In conclusion, the results validate the efficacy of a unified

ML-driven approach in managing reliability in microservice

ecosystems. The integration of telemetry, detection, and RCA

into a coherent architecture delivers tangible improvements in

operational awareness, while reducing the mean time to detect

(MTTD) and mean time to resolution (MTTR) of production

issues.

10

5. Conclusion

In this study, we proposed a unified framework that

integrates anomaly detection and RCA for microservice-

based systems, leveraging machine learning and distributed

tracing technologies. The framework was designed to address

the increasing complexity and dynamic behavior of modern

cloud-native applications, where traditional monitoring

approaches often fall short in accuracy, scalability, and

explain ability.

Our results confirm that the framework is capable of

performing real-time anomaly detection with high precision

and recall, while maintaining low detection latency. Through

the integration of an RCA module based on service

dependency graphs and temporal correlation, the system

demonstrates strong capabilities in accurately identifying the

origin of cascading failures, even in the presence of multiple

fault sources.

The modular architecture of the framework allows for

flexibility in adapting to different system environments and

workloads. It is not tied to a specific anomaly detection

algorithm, which enables future integration of more advanced

or domain-specific models, such as deep learning or federated

learning techniques. Moreover, the system’s ability to learn

from historical data and adapt to evolving behavior makes it

a practical solution for production-scale deployments.

Nonetheless, challenges remain. False positives under rare

but non-fault conditions suggest the need for more context-

aware detection mechanisms. Additionally, while the

framework reduces operator burden by automating fault

localization, interpretability of results—especially in

complex multi-service topologies—can still be improved

through more intuitive visualizations and human-in-the-loop

feedback mechanisms.

Overall, this research demonstrates that combining

telemetry analytics, machine learning, and explainable RCA

into a single pipeline significantly enhances observability and

reliability in microservice systems. As organizations continue

to adopt distributed architectures, such unified and intelligent

approaches will be critical in ensuring operational resilience,

minimizing downtime, and enabling proactive system

management.

Future work may focus on extending the framework to

include predictive capabilities for failure prevention,

integrating reinforcement learning for adaptive thresholding,

and expanding evaluation in real-world industrial

deployments. By continuing to refine the synergy between

observability and intelligence, we can better equip complex

software systems to self-monitor, self-diagnose, and

eventually, self-heal.

References

[1] Kansal, S., & Balasubramaniam, V. S. (2024). Microservices
Architecture in Large-Scale Distributed Systems: Performance
and Efficiency Gains. Journal of Quantum Science and
Technology (JQST), 1(4), 633-663.

[2] Abgaz, Y., McCarren, A., Elger, P., Solan, D., Lapuz, N., Bivol,
M., ... & Clarke, P. (2023). Decomposition of monolith
applications into microservices architectures: A systematic
review. IEEE Transactions on Software Engineering, 49(8),
4213-4242.

[3] Oyeniran, O. C., Modupe, O. T., Otitoola, A. A., Abiona, O. O.,
Adewusi, A. O., & Oladapo, O. J. (2024). A comprehensive
review of leveraging cloud-native technologies for scalability

and resilience in software development. International Journal
of Science and Research Archive, 11(2), 330-337.

[4] Usman, M., Ferlin, S., Brunstrom, A., & Taheri, J. (2022). A
survey on observability of distributed edge & container-based
microservices. IEEE Access, 10, 86904-86919.

[5] Xing, S., Wang, Y., & Liu, W. (2025). Multi-Dimensional
Anomaly Detection and Fault Localization in Microservice
Architectures: A Dual-Channel Deep Learning Approach with
Causal Inference for Intelligent Sensing. Sensors.

[6] Tsechelidis, M. (2023). Developing distributed systems with
modular monoliths and microservices.

[7] Rzym, G., Masny, A., & Chołda, P. (2024). Dynamic telemetry
and deep neural networks for anomaly detection in 6G
software-defined networks. Electronics, 13(2), 382.

[8] Hahn, D. A., Davidson, D., & Bardas, A. G. (2020). Security
Issues and Challenges in Service Meshes--An Extended Study.
arXiv preprint arXiv:2010.11079.

[9] Katragadda, S. R., Tanikonda, A., Pandey, B. K., & Peddinti,
S. R. (2022). Machine Learning-Enhanced Root Cause
Analysis for Rapid Incident Management in High-Complexity
Systems. Journal of Science & Technology, 3(3), 325-345.

[10] RIBEIRO, A. N. (2024). Unsupervised learning algorithms for
data-driven fault management in optical networks.

[11] Chalapathy, R., & Chawla, S. (2019). Deep learning for
anomaly detection: A survey. arXiv preprint arXiv:1901.03407.

[12] Rossi, F., Cardellini, V., & Presti, F. L. (2020, November).
Self-adaptive threshold-based policy for microservices
elasticity. In 2020 28th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS) (pp. 1-8). IEEE.

[13] Murphy, J., Ward, J. E., & Mac Namee, B. (2023, October). An
overview of machine learning techniques for onboard anomaly
detection in satellite telemetry. In 2023 European Data
Handling & Data Processing Conference (EDHPC) (pp. 1-6).
IEEE.

[14] Faseeha, U., Syed, H. J., Samad, F., Zehra, S., & Ahmed, H.
(2025). Observability in Microservices: An In-Depth
Exploration of Frameworks, Challenges, and Deployment
Paradigms. IEEE Access.

[15] Tiwari, A. (2024). Unveiling Graph Structures in
Microservices: Service Dependency Graph, Call Graph, and
Causal Graph. Abhishek Tiwari.

[16] Zakrzewski, R. (2024). Matrix-Based Graph Comparison
Method for Behavioural Patterns Analysis with Application to
Anomaly Detection Using Machine Learning in Wireless
Multi-hop IoT Networks (Doctoral dissertation, University of
Bristol).

[17] Ahmed, S. F., Kuldeep, S. A., Rafa, S. J., Fazal, J., Hoque, M.,
Liu, G., & Gandomi, A. H. (2024). Enhancement of traffic
forecasting through graph neural network-based information
fusion techniques. Information Fusion, 110, 102466.

[18] Steenwinckel, B., De Paepe, D., Vanden Hautte, S., Heyvaert,
P., Bentefrit, M., Moens, P., ... & Ongenae, F. (2021). FLAGS:
A methodology for adaptive anomaly detection and root cause
analysis on sensor data streams by fusing expert knowledge
with machine learning. Future Generation Computer Systems,
116, 30-48.

[19] Wang, J., Tan, Y., Jiang, B., Wu, B., & Liu, W. (2025).
Dynamic Marketing Uplift Modeling: A Symmetry-Preserving
Framework Integrating Causal Forests with Deep
Reinforcement Learning for Personalized Intervention
Strategies. Symmetry, 17(4), 610.

11

[20] Dhaou, A. (2024). Interpretable and Causal Analysis for
Multivariate Time Series (Doctoral dissertation, Institut
Polytechnique de Paris).

[21] Wu, B., Qiu, S., & Liu, W. (2025). Addressing Sensor Data
Heterogeneity and Sample Imbalance: A Transformer-Based
Approach for Battery Degradation Prediction in Electric
Vehicles. Sensors, 25(11), 3564.

[22] Wolniak, R., Gajdzik, B., & Grebski, W. (2023). The usage of
Root Cause Analysis (RCA) in Industry 4.0 conditions.
Zeszyty Naukowe Politechniki Śląskiej. Organizacja i
Zarządzanie, 190, 223-235.

[23] Liu, Y., Guo, L., Hu, X., & Zhou, M. (2025). Sensor-Integrated
Inverse Design of Sustainable Food Packaging Materials via
Generative Adversarial Networks. Sensors.

