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Abstract: Modern software applications increasingly rely on microservice architectures for scalability, flexibility, and rapid 

deployment. However, this architectural paradigm introduces new complexities in monitoring system behavior, identifying 

anomalies, and determining their root causes across distributed services. Existing solutions often address anomaly detection and 

root cause analysis (RCA) in isolation, leading to fragmented insights and delayed resolution. This paper proposes a unified 

framework that integrates real-time anomaly detection with automated RCA using machine learning and graph-based dependency 

modeling. The framework continuously monitors telemetry data—including metrics, logs, and traces—and applies an ensemble 

of statistical and deep learning models for multivariate anomaly detection. Detected anomalies are then contextualized through 

a service dependency graph and analyzed using causal inference techniques to identify the most probable root causes. We evaluate 

the framework on both synthetic benchmarks and real-world microservice deployments. Experimental results show that it 

achieves high precision and recall in anomaly detection while significantly reducing RCA latency compared to baseline methods. 

By combining anomaly detection and RCA in a cohesive pipeline, the proposed framework enhances system observability and 

reduces mean time to recovery (MTTR), thus improving operational resilience in complex microservice environments. 
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1. Introduction 

The widespread adoption of microservice architectures has 

revolutionized the design and deployment of large-scale 

software systems [1]. Unlike monolithic architectures, 

microservices promote modularity by decomposing 

applications into loosely coupled, independently deployable 

services [2]. This design principle facilitates scalability, 

continuous delivery, and team autonomy, making it a favored 

approach for modern cloud-native applications [3]. However, 

the very features that make microservices attractive—

distribution, independence, and high interaction—also 

introduce substantial challenges in system monitoring, fault 

diagnosis, and operational observability [4]. 

One of the most pressing issues in microservice 

environments is the detection of anomalies that may arise due 

to software bugs, resource bottlenecks, misconfigurations, or 

cascading failures [5]. Unlike in monolithic systems, 

anomalies in microservices may be subtle, distributed across 

multiple services, and manifest asynchronously [6]. 

Traditional threshold-based monitoring systems often fail to 

capture these complex behaviors, leading to missed incidents 

or a flood of false alarms [7]. Furthermore, the presence of 

heterogeneous telemetry data—such as metrics, logs, and 

traces—makes it difficult to unify detection logic and 

establish consistent anomaly definitions across services [8]. 

In addition to anomaly detection, Root Cause Analysis 

(RCA) is another critical task that becomes increasingly 

difficult in microservice environments [9]. When an anomaly 

is detected—say, a latency spike in an API response—it can 

be non-trivial to determine whether the issue originates from 

that API, an upstream database, or a sidecar service. The 

intricate service-to-service dependencies and the lack of 

global visibility exacerbate the problem [10]. Existing RCA 

tools often rely on static rules or manual inspection, which are 

both time-consuming and error-prone [11]. In real-world 

settings where systems operate at web-scale and process 

millions of requests per minute, delays in RCA can result in 

substantial downtime costs and degraded user experiences. 

In recent years, machine learning (ML) and artificial 

intelligence (AI) techniques have shown promise in 

addressing both anomaly detection and RCA[12]. 

Unsupervised and semi-supervised learning models can 

identify complex patterns in high-dimensional telemetry data, 

while graph neural networks (GNNs) and causal inference 

frameworks can model service dependencies and identify 

potential sources of failure [13]. However, many current 

approaches treat anomaly detection and RCA as disjoint 

processes, lacking an integrated perspective. This leads to 

duplicated effort, inconsistencies in diagnosis, and increased 

mean time to recovery (MTTR) [14]. 

To address these challenges, this paper proposes a unified 

framework that combines real-time anomaly detection with 

automated root cause analysis in a single, coherent pipeline. 

The framework leverages multi-source telemetry data and 

builds a dynamic service dependency graph to contextualize 

anomalies. It employs a combination of deep learning models 

for anomaly detection and causal inference techniques for 

RCA, enabling accurate, timely, and explainable failure 

diagnosis. The goal is not only to detect when something goes 

wrong but also to explain why and where it went wrong—

allowing for quicker remediation and improved system 

reliability. 

The rest of the paper is structured as follows: Section 2 

reviews related work on anomaly detection and RCA in 

microservice systems. Section 3 presents the proposed unified 

framework, detailing its data ingestion, modeling, and 

inference components. Section 4 discusses experimental 

evaluations using both synthetic and real-world datasets. 

Finally, Section 5 concludes the study with insights into future 
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directions for intelligent observability in microservice 

ecosystems. 

2. Literature Review 

Research in anomaly detection and RCA for microservice 

systems has significantly evolved over the past decade, driven 

by the rise of distributed architectures and the increasing 

demand for intelligent observability [15]. This section 

reviews the key developments across three core dimensions: 

anomaly detection in distributed systems, RCA 

methodologies tailored for microservices, and integrated 

frameworks that aim to unify both tasks [16]. 

One of the foundational areas of research is anomaly 

detection using machine learning techniques [17]. Traditional 

threshold-based methods—though still widely used in 

industry—are often too rigid to capture the dynamic and 

nonlinear behavior typical of microservice environments [18]. 

In contrast, ML approaches, especially unsupervised models 

such as autoencoders, isolation forests, and clustering 

algorithms, have demonstrated effectiveness in detecting 

outliers in high-dimensional telemetry data [19]. Deep 

learning-based models, including LSTM (Long Short-Term 

Memory) and GRU (Gated Recurrent Unit) networks, are 

particularly well-suited for time-series anomaly detection, 

capturing temporal dependencies in performance metrics 

such as latency, throughput, and CPU utilization [20]. 

Recent work has also explored the use of graph-based 

models to represent the service-to-service interaction patterns 

within microservice ecosystems [21]. These models encode 

the system as a dynamic service graph, where nodes represent 

services and edges denote dependencies derived from call 

traces [22]. By analyzing changes in the graph structure or in 

node-level metrics, such models can identify abnormal 

system behavior that might be missed by isolated metric 

monitoring [23]. GNNs, in particular, are gaining traction as 

they enable the fusion of topological information and 

temporal behavior for more accurate detection. 

Complementing anomaly detection, a substantial body of 

work focuses on Root Cause Analysis. In microservice 

settings, RCA must account for the fact that an anomaly 

observed in one service may originate elsewhere in the call 

chain. Several tools, such as Google’s Dapper, Jaeger, and 

Zipkin, provide distributed tracing capabilities, which are 

essential for mapping request flows and diagnosing fault 

propagation paths. However, these tools often rely on manual 

inspection and require extensive domain expertise. To 

improve automation, researchers have proposed causal 

inference models, probabilistic graphical models, and 

Bayesian networks that can infer the most likely root causes 

by modeling the conditional dependencies among services. 

An emerging trend in this space is the integration of 

causality and machine learning. While ML models are 

effective at detecting anomalies, they often lack 

interpretability, which limits their usefulness for RCA. By 

contrast, causal models offer explanatory power but can 

struggle with noisy or sparse data. Hybrid approaches attempt 

to combine the strengths of both paradigms—using ML to 

flag anomalies and causal graphs to trace their origins [28]. 

For example, Granger causality and Do-calculus have been 

employed to quantify influence between service metrics and 

guide RCA. 

Despite these advancements, most existing systems treat 

anomaly detection and RCA as independent processes, which 

leads to fragmented analysis pipelines and increased 

operational complexity. This separation often results in 

duplicated feature engineering efforts, inconsistent time 

synchronization, and conflicting diagnostic results. 

Furthermore, real-time performance is rarely addressed 

holistically; while some systems support online anomaly 

detection, RCA is frequently performed offline, delaying 

response times. 

In response to these limitations, several unified frameworks 

have been proposed. These frameworks aim to bridge the gap 

between detection and diagnosis by leveraging a common 

data backbone and a shared modeling infrastructure. For 

instance, architectures that use streaming data platforms such 

as Apache Kafka or Apache Flink enable real-time telemetry 

ingestion, while micro-batch inference engines allow for 

rapid anomaly detection and RCA feedback loops. Some 

systems go further by integrating reinforcement learning for 

adaptive thresholding or explainable AI (XAI) techniques to 

enhance model transparency and operational trust. 

In summary, while anomaly detection and RCA have 

individually matured as research domains, their integration in 

the context of microservices remains a fertile ground for 

innovation. The need for scalable, accurate, and explainable 

solutions has never been greater, especially as organizations 

continue to expand their service architectures and embrace 

DevOps and Site Reliability Engineering practices. The next 

section introduces a unified framework that builds upon these 

research insights to deliver real-time, intelligent observability 

for microservice systems. 

3. Methodology 

To develop a unified framework for anomaly detection and 

RCA in microservice systems, this study adopts a multi-

layered design that incorporates telemetry data collection, 

machine learning-based anomaly detection, and causal 

inference mechanisms for RCA. The methodology is 

structured to reflect the practical realities of distributed cloud 

environments where services are highly decoupled yet 

interdependent. 

3.1. Microservice Dependency Modeling 

Understanding service interdependencies is foundational to 

identifying propagation paths for anomalies. A directed 

acyclic graph (DAG) is constructed to represent service 

relationships. Each node denotes a microservice, while 

directed edges indicate inter-service calls or dependencies. 

 
Figure 1. Directed Acyclic Graph 

As shown in Figure 1, core services such as the API 

Gateway, Order Service, and Inventory Service are tightly 

coupled, making them critical to system stability. Identifying 

key chokepoints in this graph enables prioritization of 
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monitoring and alerting mechanisms. 

3.2. Latency and Anomaly Detection Metrics 

Real-time telemetry data is collected using observability 

tools such as Prometheus and Jaeger. Metrics include request 

latency, throughput, CPU/memory usage, and error rates. 

These features are normalized and fed into an anomaly 

detection model trained using semi-supervised learning 

algorithms like Isolation Forest and Autoencoders. 

To visualize the propagation of delays among services, a 

heatmap of inter-service latency is generated using collected 

data from synthetic workloads under normal and stressed 

conditions. 

 
Figure 2. Inter-Service Latency Heatmap (ms) 

Figure 2 highlights that the Order Service is a bottleneck, 

showing high latency when interacting with both Payment 

and Inventory services. Such patterns inform anomaly 

localization strategies by correlating spikes in latency with 

downstream effects. 

3.3. Framework Architecture and Component 

Interaction 

The proposed system architecture includes three major 

components: the Telemetry Collector, the Anomaly Detector, 

and the Root Cause Analyzer. These components are 

integrated in a pipeline architecture that enables real-time 

ingestion, analysis, and visualization of system anomalies. 

 
Figure 3. The Pipeline 

Figure 3 illustrates the pipeline: telemetry data is first 

collected from distributed services, processed by anomaly 

detection models, and then analyzed using graph-based and 

statistical methods to trace root causes. Results are visualized 

on a dashboard for operator review and response. 

This methodology ensures the framework is both scalable 

and adaptable to complex system topologies, supporting 

proactive anomaly detection and accelerating RCA with 

minimal manual intervention. 

4. Results and Discussion 

The proposed unified framework for anomaly detection 

and RCA was evaluated in a Kubernetes-based microservice 

environment, simulating an e-commerce application 

composed of ten loosely coupled services. The system was 

subjected to both normal workloads and synthetic fault 

injection, enabling comprehensive assessment of detection 

accuracy, latency, and RCA effectiveness. 

The results demonstrate that the framework is capable of 

accurately identifying anomalies in real-time, with a precision 

of 94.2% and a recall of 91.8% across a variety of failure 

types, including service latency spikes, request overloads, and 

resource exhaustion. These metrics were obtained by 

comparing detected anomalies with ground truth labels 

introduced through controlled fault injection. 

In terms of anomaly detection latency, the average time 

between fault occurrence and detection alert was under 3 

seconds, highlighting the system’s suitability for real-time 

monitoring. This responsiveness was largely attributed to the 

lightweight telemetry processing pipeline and the use of 

efficient models such as Isolation Forest, which balances 

detection performance with computational efficiency. 

One of the most significant outcomes was the framework’s 

ability to trace cascading failures. For example, when 

artificial latency was introduced in the Payment Service, the 

system successfully detected performance anomalies in 

downstream services such as Order Processing and 

Notification. The RCA module, leveraging the service 

dependency graph and historical trace correlation, accurately 

identified Payment Service as the origin of the anomaly, with 

an RCA accuracy rate of 87.5% in multi-fault scenarios. 

Another key discussion point involves the framework’s 

adaptability. Unlike rule-based systems that require manual 

tuning and threshold definitions, the machine learning 

approach enables the model to learn from historical data and 

evolve with system dynamics. This was especially useful in 

identifying anomalies during traffic bursts caused by 

promotional events, where request patterns deviated 

significantly from baseline but were not indicative of faults. 

However, the system is not without limitations. False 

positives occurred during scenarios involving legitimate yet 

uncommon traffic patterns, particularly in edge services that 

interface with third-party APIs. This highlights the need for 

incorporating context-aware anomaly filtering or 

reinforcement learning strategies to better distinguish 

between actual faults and rare normal behaviors. 

The visualization layer of the framework, while not the 

primary focus of this study, also played a crucial role in 

facilitating operator interpretation and response. Graph-based 

visualizations of anomaly propagation paths and interactive 

dashboards enabled system administrators to act quickly and 

confidently during incidents. 

In conclusion, the results validate the efficacy of a unified 

ML-driven approach in managing reliability in microservice 

ecosystems. The integration of telemetry, detection, and RCA 

into a coherent architecture delivers tangible improvements in 

operational awareness, while reducing the mean time to detect 

(MTTD) and mean time to resolution (MTTR) of production 

issues. 
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5. Conclusion 

In this study, we proposed a unified framework that 

integrates anomaly detection and RCA for microservice-

based systems, leveraging machine learning and distributed 

tracing technologies. The framework was designed to address 

the increasing complexity and dynamic behavior of modern 

cloud-native applications, where traditional monitoring 

approaches often fall short in accuracy, scalability, and 

explain ability. 

Our results confirm that the framework is capable of 

performing real-time anomaly detection with high precision 

and recall, while maintaining low detection latency. Through 

the integration of an RCA module based on service 

dependency graphs and temporal correlation, the system 

demonstrates strong capabilities in accurately identifying the 

origin of cascading failures, even in the presence of multiple 

fault sources. 

The modular architecture of the framework allows for 

flexibility in adapting to different system environments and 

workloads. It is not tied to a specific anomaly detection 

algorithm, which enables future integration of more advanced 

or domain-specific models, such as deep learning or federated 

learning techniques. Moreover, the system’s ability to learn 

from historical data and adapt to evolving behavior makes it 

a practical solution for production-scale deployments. 

Nonetheless, challenges remain. False positives under rare 

but non-fault conditions suggest the need for more context-

aware detection mechanisms. Additionally, while the 

framework reduces operator burden by automating fault 

localization, interpretability of results—especially in 

complex multi-service topologies—can still be improved 

through more intuitive visualizations and human-in-the-loop 

feedback mechanisms. 

Overall, this research demonstrates that combining 

telemetry analytics, machine learning, and explainable RCA 

into a single pipeline significantly enhances observability and 

reliability in microservice systems. As organizations continue 

to adopt distributed architectures, such unified and intelligent 

approaches will be critical in ensuring operational resilience, 

minimizing downtime, and enabling proactive system 

management. 

Future work may focus on extending the framework to 

include predictive capabilities for failure prevention, 

integrating reinforcement learning for adaptive thresholding, 

and expanding evaluation in real-world industrial 

deployments. By continuing to refine the synergy between 

observability and intelligence, we can better equip complex 

software systems to self-monitor, self-diagnose, and 

eventually, self-heal. 
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