Computer Life
ISSN: 1819-4818 | Vol. 13, No. 2, 2025

A Unified Framework for Anomaly Detection and Root
Cause Analysis in Microservice Systems

Oliver Meyer, Eric Johnson, Jacob Brown*

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
* Corresponding author Email: jac.brown23@asu.edu

Abstract: Modern software applications increasingly rely on microservice architectures for scalability, flexibility, and rapid
deployment. However, this architectural paradigm introduces new complexities in monitoring system behavior, identifying
anomalies, and determining their root causes across distributed services. Existing solutions often address anomaly detection and
root cause analysis (RCA) in isolation, leading to fragmented insights and delayed resolution. This paper proposes a unified
framework that integrates real-time anomaly detection with automated RCA using machine learning and graph-based dependency
modeling. The framework continuously monitors telemetry data—including metrics, logs, and traces—and applies an ensemble
of statistical and deep learning models for multivariate anomaly detection. Detected anomalies are then contextualized through
a service dependency graph and analyzed using causal inference techniques to identify the most probable root causes. We evaluate
the framework on both synthetic benchmarks and real-world microservice deployments. Experimental results show that it
achieves high precision and recall in anomaly detection while significantly reducing RCA latency compared to baseline methods.
By combining anomaly detection and RCA in a cohesive pipeline, the proposed framework enhances system observability and
reduces mean time to recovery (MTTR), thus improving operational resilience in complex microservice environments.

Keywords: Microservice Architecture; Anomaly Detection; Root Cause Analysis; Observability; Telemetry Data; Machine

Learning; Service Dependency Graph; Distributed Systems; System Monitoring.

1. Introduction

The widespread adoption of microservice architectures has
revolutionized the design and deployment of large-scale
software systems [1]. Unlike monolithic architectures,
microservices promote modularity by decomposing
applications into loosely coupled, independently deployable
services [2]. This design principle facilitates scalability,
continuous delivery, and team autonomy, making it a favored
approach for modern cloud-native applications [3]. However,
the very features that make microservices attractive—
distribution, independence, and high interaction—also
introduce substantial challenges in system monitoring, fault
diagnosis, and operational observability [4].

One of the most pressing issues in microservice
environments is the detection of anomalies that may arise due
to software bugs, resource bottlenecks, misconfigurations, or
cascading failures [5]. Unlike in monolithic systems,
anomalies in microservices may be subtle, distributed across
multiple services, and manifest asynchronously [6].
Traditional threshold-based monitoring systems often fail to
capture these complex behaviors, leading to missed incidents
or a flood of false alarms [7]. Furthermore, the presence of
heterogeneous telemetry data—such as metrics, logs, and
traces—makes it difficult to unify detection logic and
establish consistent anomaly definitions across services [8].

In addition to anomaly detection, Root Cause Analysis
(RCA) is another critical task that becomes increasingly
difficult in microservice environments [9]. When an anomaly
is detected—say, a latency spike in an API response—it can
be non-trivial to determine whether the issue originates from
that API, an upstream database, or a sidecar service. The
intricate service-to-service dependencies and the lack of
global visibility exacerbate the problem [10]. Existing RCA
tools often rely on static rules or manual inspection, which are

both time-consuming and error-prone [11]. In real-world
settings where systems operate at web-scale and process
millions of requests per minute, delays in RCA can result in
substantial downtime costs and degraded user experiences.

In recent years, machine learning (ML) and artificial
intelligence (Al) techniques have shown promise in
addressing both anomaly detection and RCA[12].
Unsupervised and semi-supervised learning models can
identify complex patterns in high-dimensional telemetry data,
while graph neural networks (GNNs) and causal inference
frameworks can model service dependencies and identify
potential sources of failure [13]. However, many current
approaches treat anomaly detection and RCA as disjoint
processes, lacking an integrated perspective. This leads to
duplicated effort, inconsistencies in diagnosis, and increased
mean time to recovery (MTTR) [14].

To address these challenges, this paper proposes a unified
framework that combines real-time anomaly detection with
automated root cause analysis in a single, coherent pipeline.
The framework leverages multi-source telemetry data and
builds a dynamic service dependency graph to contextualize
anomalies. It employs a combination of deep learning models
for anomaly detection and causal inference techniques for
RCA, enabling accurate, timely, and explainable failure
diagnosis. The goal is not only to detect when something goes
wrong but also to explain why and where it went wrong—
allowing for quicker remediation and improved system
reliability.

The rest of the paper is structured as follows: Section 2
reviews related work on anomaly detection and RCA in
microservice systems. Section 3 presents the proposed unified
framework, detailing its data ingestion, modeling, and
inference components. Section 4 discusses experimental
evaluations using both synthetic and real-world datasets.
Finally, Section 5 concludes the study with insights into future

directions for intelligent observability in microservice
ecosystems.

2. Literature Review

Research in anomaly detection and RCA for microservice
systems has significantly evolved over the past decade, driven
by the rise of distributed architectures and the increasing
demand for intelligent observability [15]. This section
reviews the key developments across three core dimensions:
anomaly detection in distributed systems, RCA
methodologies tailored for microservices, and integrated
frameworks that aim to unify both tasks [16].

One of the foundational areas of research is anomaly
detection using machine learning techniques [17]. Traditional
threshold-based methods—though still widely used in
industry—are often too rigid to capture the dynamic and

nonlinear behavior typical of microservice environments [18].

In contrast, ML approaches, especially unsupervised models
such as autoencoders, isolation forests, and clustering
algorithms, have demonstrated effectiveness in detecting
outliers in high-dimensional telemetry data [19]. Deep
learning-based models, including LSTM (Long Short-Term
Memory) and GRU (Gated Recurrent Unit) networks, are
particularly well-suited for time-series anomaly detection,
capturing temporal dependencies in performance metrics
such as latency, throughput, and CPU utilization [20].
Recent work has also explored the use of graph-based
models to represent the service-to-service interaction patterns
within microservice ecosystems [21]. These models encode
the system as a dynamic service graph, where nodes represent
services and edges denote dependencies derived from call
traces [22]. By analyzing changes in the graph structure or in
node-level metrics, such models can identify abnormal
system behavior that might be missed by isolated metric
monitoring [23]. GNNs, in particular, are gaining traction as
they enable the fusion of topological information and
temporal behavior for more accurate detection.
Complementing anomaly detection, a substantial body of
work focuses on Root Cause Analysis. In microservice
settings, RCA must account for the fact that an anomaly
observed in one service may originate elsewhere in the call
chain. Several tools, such as Google’s Dapper, Jaeger, and
Zipkin, provide distributed tracing capabilities, which are
essential for mapping request flows and diagnosing fault
propagation paths. However, these tools often rely on manual
inspection and require extensive domain expertise. To
improve automation, researchers have proposed causal
inference models, probabilistic graphical models, and
Bayesian networks that can infer the most likely root causes
by modeling the conditional dependencies among services.
An emerging trend in this space is the integration of
causality and machine learning. While ML models are
effective at detecting anomalies, they often lack
interpretability, which limits their usefulness for RCA. By
contrast, causal models offer explanatory power but can
struggle with noisy or sparse data. Hybrid approaches attempt
to combine the strengths of both paradigms—using ML to
flag anomalies and causal graphs to trace their origins [28].
For example, Granger causality and Do-calculus have been
employed to quantify influence between service metrics and
guide RCA.
Despite these advancements, most existing systems treat
anomaly detection and RCA as independent processes, which
leads to fragmented analysis pipelines and increased

operational complexity. This separation often results in
duplicated feature engineering efforts, inconsistent time
synchronization, and conflicting diagnostic results.
Furthermore, real-time performance is rarely addressed
holistically; while some systems support online anomaly
detection, RCA is frequently performed oftline, delaying
response times.

In response to these limitations, several unified frameworks
have been proposed. These frameworks aim to bridge the gap
between detection and diagnosis by leveraging a common
data backbone and a shared modeling infrastructure. For
instance, architectures that use streaming data platforms such
as Apache Kafka or Apache Flink enable real-time telemetry
ingestion, while micro-batch inference engines allow for
rapid anomaly detection and RCA feedback loops. Some
systems go further by integrating reinforcement learning for
adaptive thresholding or explainable Al (XAI) techniques to
enhance model transparency and operational trust.

In summary, while anomaly detection and RCA have
individually matured as research domains, their integration in
the context of microservices remains a fertile ground for
innovation. The need for scalable, accurate, and explainable
solutions has never been greater, especially as organizations
continue to expand their service architectures and embrace
DevOps and Site Reliability Engineering practices. The next
section introduces a unified framework that builds upon these
research insights to deliver real-time, intelligent observability
for microservice systems.

3. Methodology

To develop a unified framework for anomaly detection and
RCA in microservice systems, this study adopts a multi-
layered design that incorporates telemetry data collection,
machine learning-based anomaly detection, and causal
inference mechanisms for RCA. The methodology is
structured to reflect the practical realities of distributed cloud
environments where services are highly decoupled yet
interdependent.

3.1. Microservice Dependency Modeling

Understanding service interdependencies is foundational to
identifying propagation paths for anomalies. A directed
acyclic graph (DAG) is constructed to represent service
relationships. Each node denotes a microservice, while
directed edges indicate inter-service calls or dependencies.

Database

Inventory Service

I

Order Service

&

Payment Service

Auth Service

User DB

Figure 1. Directed Acyclic Graph

As shown in Figure 1, core services such as the API
Gateway, Order Service, and Inventory Service are tightly
coupled, making them critical to system stability. Identifying
key chokepoints in this graph enables prioritization of

monitoring and alerting mechanisms.

3.2. Latency and Anomaly Detection Metrics

Real-time telemetry data is collected using observability
tools such as Prometheus and Jaeger. Metrics include request
latency, throughput, CPU/memory usage, and error rates.
These features are normalized and fed into an anomaly
detection model trained using semi-supervised learning
algorithms like Isolation Forest and Autoencoders.

To visualize the propagation of delays among services, a
heatmap of inter-service latency is generated using collected
data from synthetic workloads under normal and stressed
conditions.

- - . 25

Auth APl Gateway

Order

=10

Payment
o
°

0 0

Inventory

API Gateway Auth Order Payment Inver:ltury

Figure 2. Inter-Service Latency Heatmap (ms)

Figure 2 highlights that the Order Service is a bottleneck,
showing high latency when interacting with both Payment
and Inventory services. Such patterns inform anomaly
localization strategies by correlating spikes in latency with
downstream effects.

3.3. Framework Architecture and Component
Interaction

The proposed system architecture includes three major
components: the Telemetry Collector, the Anomaly Detector,
and the Root Cause Analyzer. These components are
integrated in a pipeline architecture that enables real-time
ingestion, analysis, and visualization of system anomalies.

Telemetry Collector

Anomaly Detector

/

Root Cause Analyzer

e

Dashboard

Figure 3. The Pipeline

Figure 3 illustrates the pipeline: telemetry data is first
collected from distributed services, processed by anomaly
detection models, and then analyzed using graph-based and
statistical methods to trace root causes. Results are visualized
on a dashboard for operator review and response.

This methodology ensures the framework is both scalable
and adaptable to complex system topologies, supporting

proactive anomaly detection and accelerating RCA with
minimal manual intervention.

4. Results and Discussion

The proposed unified framework for anomaly detection
and RCA was evaluated in a Kubernetes-based microservice
environment, simulating an e-commerce application
composed of ten loosely coupled services. The system was
subjected to both normal workloads and synthetic fault
injection, enabling comprehensive assessment of detection
accuracy, latency, and RCA effectiveness.

The results demonstrate that the framework is capable of
accurately identifying anomalies in real-time, with a precision
of 94.2% and a recall of 91.8% across a variety of failure
types, including service latency spikes, request overloads, and
resource exhaustion. These metrics were obtained by
comparing detected anomalies with ground truth labels
introduced through controlled fault injection.

In terms of anomaly detection latency, the average time
between fault occurrence and detection alert was under 3
seconds, highlighting the system’s suitability for real-time
monitoring. This responsiveness was largely attributed to the
lightweight telemetry processing pipeline and the use of
efficient models such as Isolation Forest, which balances
detection performance with computational efficiency.

One of the most significant outcomes was the framework’s
ability to trace cascading failures. For example, when
artificial latency was introduced in the Payment Service, the
system successfully detected performance anomalies in
downstream services such as Order Processing and
Notification. The RCA module, leveraging the service
dependency graph and historical trace correlation, accurately
identified Payment Service as the origin of the anomaly, with
an RCA accuracy rate of 87.5% in multi-fault scenarios.

Another key discussion point involves the framework’s
adaptability. Unlike rule-based systems that require manual
tuning and threshold definitions, the machine learning
approach enables the model to learn from historical data and
evolve with system dynamics. This was especially useful in
identifying anomalies during traffic bursts caused by
promotional events, where request patterns deviated
significantly from baseline but were not indicative of faults.

However, the system is not without limitations. False
positives occurred during scenarios involving legitimate yet
uncommon traffic patterns, particularly in edge services that
interface with third-party APIs. This highlights the need for
incorporating context-aware anomaly filtering or
reinforcement learning strategies to better distinguish
between actual faults and rare normal behaviors.

The visualization layer of the framework, while not the
primary focus of this study, also played a crucial role in
facilitating operator interpretation and response. Graph-based
visualizations of anomaly propagation paths and interactive
dashboards enabled system administrators to act quickly and
confidently during incidents.

In conclusion, the results validate the efficacy of a unified
ML-driven approach in managing reliability in microservice
ecosystems. The integration of telemetry, detection, and RCA
into a coherent architecture delivers tangible improvements in
operational awareness, while reducing the mean time to detect
(MTTD) and mean time to resolution (MTTR) of production
issues.

5. Conclusion

In this study, we proposed a unified framework that
integrates anomaly detection and RCA for microservice-
based systems, leveraging machine learning and distributed
tracing technologies. The framework was designed to address
the increasing complexity and dynamic behavior of modern
cloud-native applications, where traditional monitoring
approaches often fall short in accuracy, scalability, and
explain ability.

Our results confirm that the framework is capable of
performing real-time anomaly detection with high precision
and recall, while maintaining low detection latency. Through
the integration of an RCA module based on service
dependency graphs and temporal correlation, the system
demonstrates strong capabilities in accurately identifying the
origin of cascading failures, even in the presence of multiple
fault sources.

The modular architecture of the framework allows for
flexibility in adapting to different system environments and
workloads. It is not tied to a specific anomaly detection
algorithm, which enables future integration of more advanced
or domain-specific models, such as deep learning or federated
learning techniques. Moreover, the system’s ability to learn
from historical data and adapt to evolving behavior makes it
a practical solution for production-scale deployments.

Nonetheless, challenges remain. False positives under rare
but non-fault conditions suggest the need for more context-
aware detection mechanisms. Additionally, while the
framework reduces operator burden by automating fault
localization, interpretability of results—especially in
complex multi-service topologies—can still be improved
through more intuitive visualizations and human-in-the-loop
feedback mechanisms.

Overall, this research demonstrates that combining
telemetry analytics, machine learning, and explainable RCA
into a single pipeline significantly enhances observability and
reliability in microservice systems. As organizations continue
to adopt distributed architectures, such unified and intelligent
approaches will be critical in ensuring operational resilience,
minimizing downtime, and enabling proactive system
management.

Future work may focus on extending the framework to
include predictive capabilities for failure prevention,
integrating reinforcement learning for adaptive thresholding,
and expanding evaluation in real-world industrial
deployments. By continuing to refine the synergy between
observability and intelligence, we can better equip complex
software systems to self-monitor, self-diagnose, and
eventually, self-heal.

References

[1] Kansal, S., & Balasubramaniam, V. S. (2024). Microservices
Architecture in Large-Scale Distributed Systems: Performance
and Efficiency Gains. Journal of Quantum Science and
Technology (JQST), 1(4), 633-663.

Abgaz, Y., McCarren, A., Elger, P., Solan, D., Lapuz, N., Bivol,
M., ... & Clarke, P. (2023). Decomposition of monolith
applications into microservices architectures: A systematic
review. IEEE Transactions on Software Engineering, 49(8),
4213-4242.

Oyeniran, O. C., Modupe, O. T., Otitoola, A. A., Abiona, O. O.,
Adewusi, A. O., & Oladapo, O. J. (2024). A comprehensive
review of leveraging cloud-native technologies for scalability

(2]

(3]

10

and resilience in software development. International Journal
of Science and Research Archive, 11(2), 330-337.

Usman, M., Ferlin, S., Brunstrom, A., & Taheri, J. (2022). A
survey on observability of distributed edge & container-based
microservices. IEEE Access, 10, 86904-86919.

Xing, S., Wang, Y., & Liu, W. (2025). Multi-Dimensional
Anomaly Detection and Fault Localization in Microservice
Architectures: A Dual-Channel Deep Learning Approach with
Causal Inference for Intelligent Sensing. Sensors.

Tsechelidis, M. (2023). Developing distributed systems with
modular monoliths and microservices.

Rzym, G., Masny, A., & Chotda, P. (2024). Dynamic telemetry
and deep neural networks for anomaly detection in 6G
software-defined networks. Electronics, 13(2), 382.

Hahn, D. A, Davidson, D., & Bardas, A. G. (2020). Security
Issues and Challenges in Service Meshes--An Extended Study.
arXiv preprint arXiv:2010.11079.

Katragadda, S. R., Tanikonda, A., Pandey, B. K., & Peddinti,
S. R. (2022). Machine Learning-Enhanced Root Cause
Analysis for Rapid Incident Management in High-Complexity
Systems. Journal of Science & Technology, 3(3), 325-345.

RIBEIRO, A. N. (2024). Unsupervised learning algorithms for
data-driven fault management in optical networks.

[11] Chalapathy, R., & Chawla, S. (2019). Deep learning for
anomaly detection: A survey. arXiv preprint arXiv:1901.03407.

[12] Rossi, F., Cardellini, V., & Presti, F. L. (2020, November).
Self-adaptive threshold-based policy for microservices
elasticity. In 2020 28th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS) (pp. 1-8). IEEE.

Murphy, J., Ward, J. E., & Mac Namee, B. (2023, October). An
overview of machine learning techniques for onboard anomaly
detection in satellite telemetry. In 2023 European Data
Handling & Data Processing Conference (EDHPC) (pp. 1-6).
IEEE.

Faseeha, U., Syed, H. J., Samad, F., Zehra, S., & Ahmed, H.
(2025). Observability in Microservices: An In-Depth
Exploration of Frameworks, Challenges, and Deployment
Paradigms. IEEE Access.

Tiwari, A. (2024). Unveiling Graph Structures in
Microservices: Service Dependency Graph, Call Graph, and
Causal Graph. Abhishek Tiwari.

Zakrzewski, R. (2024). Matrix-Based Graph Comparison
Method for Behavioural Patterns Analysis with Application to
Anomaly Detection Using Machine Learning in Wireless
Multi-hop 10T Networks (Doctoral dissertation, University of
Bristol).

Ahmed, S. F., Kuldeep, S. A., Rafa, S. J., Fazal, J., Hoque, M.,
Liu, G., & Gandomi, A. H. (2024). Enhancement of traffic
forecasting through graph neural network-based information
fusion techniques. Information Fusion, 110, 102466.

(8]

(9]

(10]

[13]

[14]

[15]

[16]

[17]

[18] Steenwinckel, B., De Paepe, D., Vanden Hautte, S., Heyvaert,
P., Bentefrit, M., Moens, P., ... & Ongenae, F. (2021). FLAGS:
A methodology for adaptive anomaly detection and root cause
analysis on sensor data streams by fusing expert knowledge
with machine learning. Future Generation Computer Systems,

116, 30-48.

Wang, J., Tan, Y., Jiang, B., Wu, B., & Liu, W. (2025).
Dynamic Marketing Uplift Modeling: A Symmetry-Preserving
Framework Integrating Causal Forests with Deep
Reinforcement Learning for Personalized Intervention
Strategies. Symmetry, 17(4), 610.

[19]

[20] Dhaou, A. (2024). Interpretable and Causal Analysis for [22] Wolniak, R., Gajdzik, B., & Grebski, W. (2023). The usage of
Multivariate Time Series (Doctoral dissertation, Institut Root Cause Analysis (RCA) in Industry 4.0 conditions.
Polytechnique de Paris). Zeszyty Naukowe Politechniki Slaskiej. Organizacja i

[21] Wu, B., Qiu, S., & Liu, W. (2025). Addressing Sensor Data Zarzadzanie, 190, 223-235.
Heterogeneity and Sample Imbalance: A Transformer-Based [23] Liu, Y., Guo, L., Hu, X., & Zhou, M. (2025). Sensor-Integrated
Approach for Battery Degradation Prediction in Electric Inverse Design of Sustainable Food Packaging Materials via
Vehicles. Sensors, 25(11), 3564. Generative Adversarial Networks. Sensors.

11

