
Computer Life
ISSN: 1819-4818 | Vol. 13, No. 2, 2025

15

A Path Planning Algorithm for Unmanned Overhead
Cranes Integrating Improved A* and D* Lite with
Kinematic Optimization

Wubo Zhang

School of Anhui University of Technology, Anhui 10360, China

Abstract: Aiming at the problems of excessive redundant nodes, unsmooth paths, and poor adaptability to dynamic

environments in the path planning of unmanned cranes in coil warehouses, this paper proposes a hybrid path planning algorithm

(AD* Lite) integrating improved A* and D* Lite, along with a quintic polynomial kinematic optimization method. Firstly, a

collision detection mechanism is designed to prevent paths from passing through obstacle vertices, and a redundant node deletion

strategy is introduced to enhance path smoothness. Secondly, a multi-scenario adaptive hybrid algorithm is constructed by

combining the static planning advantages of the A* algorithm and the dynamic re-planning capability of the D* Lite algorithm.

Furthermore, quintic polynomials are used to optimize the path, integrating kinematic constraints such as speed, acceleration,

and turning radius. Experiments show that under the satisfaction of kinematic constraints, the improved fusion algorithm

improves various indicators such as path length, search time, number of turns, and number of searched grids by approximately

40%.

Keywords: Path Planning; A* Algorithm; D* Lite Algorithm; Quintic Polynomial; Kinematic Constraints.

1. Introduction

In the automation process of the steel industry, path

planning for unmanned cranes in coil warehouses is a core

technology. Traditional algorithms have problems such as

paths passing through obstacle vertices, excessive redundant

nodes, and single application scenarios. Improved fusion

algorithms based on traditional algorithms provide new ideas

for path planning. Salzmann et al. (2022)[1] proposed a

Transformer-based multimodal trajectory prediction model,

which solves the problem of generating dynamically feasible

paths by fusing visual, radar, and map data. However, the self-

attention mechanism leads to high inference latency, making

it difficult to meet the requirements of real-time path planning.

Yan Jianhong et al. (2024)[2] proposed a mobile robot path

planning algorithm that improves A* by fusing the Dynamic

Window Approach (DWA), addressing the issues of dense

turning points and excessive traversed nodes in the A*

algorithm's path planning process. Shi Gaojian et al. (2024)

proposed a greedy strategy-improved RRT* algorithm for

robotic arm path planning[3], which solves the problems of

suboptimal path quality and slow convergence speed but may

have deficiencies in path optimality. Ren Qingxin et al.

(2025)[4] proposed a robot 2D path planning method based

on Dijkstra's algorithm and the Arctic Puffin Optimization

(APO) algorithm, which optimizes path quality and planning

efficiency but has poor scalability and environmental

adaptability. Currently, although A* and D* Lite algorithms

are mature, they still have issues in adaptability to static and

dynamic environments and path turning smoothness, and

neither considers crane kinematic constraints (such as speed

and acceleration limits). Through analyzing actual scenario

requirements, it is found that existing algorithms have room

for improvement in complex scenario adaptability and

feasibility under multiple constraints.

2. Hybrid Path Planning with
Improved A* and D* Lite
Algorithms

Traditional A*[5] and D* Lite algorithms[6] are

respectively suitable for static and dynamic scenarios, with

single application scenarios. Additionally, these algorithms

have problems such as excessive redundant nodes in planned

paths, unsmooth paths, and failure to consider kinematic

constraints. To solve these problems, this paper proposes a

hybrid path planning method based on improved A* and D*

Lite algorithms, incorporating multiple constraints to ensure

algorithm reliability.

2.1. Improvements to Traditional Algorithms

2.1.1. Collision Detection Mechanism

When traditional algorithms use 4-directional or 8-

directional neighborhoods, paths often pass through obstacle

vertices during turns, which is dangerous in practical

scenarios. This paper adopts a collision detection

mechanism[7] to solve this problem, which includes two key

components: a collision detection function and neighbor node

selection. The collision detection function undertakes the key

task of collision detection, determining whether the path from

the start to the end collides with obstacles. If the path passes

through an obstacle vertex, the current node is replaced with

a preset neighbor node. This is crucial for handling path

corners and avoiding crossing obstacle vertices. The neighbor

node function is used to obtain neighbor nodes of a given

node s, considering obstacles during selection, which

indirectly helps avoid crossing obstacle vertices at path

corners. The specific method is as follows:

First, check whether the two endpoints of the start and end

points are obstacles themselves. If either point is in the

obstacle set, it is directly determined that there is a collision.

Then, for the case where the non-endpoint is directly an

16

obstacle, further determine whether the line between the two

points intersects with the obstacle. Especially when the two

points are on different abscissas and ordinates (i.e., not

adjacent points in the horizontal or vertical direction), it will

indirectly determine whether the line intersects with the

obstacle by judging whether the diagonal vertices s1 and s2

of the rectangle formed by these two points are in the obstacle

set. If s1 or s2 is in the obstacle set, it means that the line

collides with the obstacle; if no collision is found after all the

above detections, it indicates that the path between the two

points is collision-free. The performance of the collision

detection mechanism is shown in Figure 1:

Fig.1 Performance of the collision detection mechanism

2.1.2. Redundant Node Deletion

When calculating paths using Manhattan distance[8], the

search direction is limited to 4 directions, resulting in many

right-angle inflection points. Although using 8-directional

neighborhoods with Euclidean distance[9] effectively reduces

right angles, paths may pass through obstacle vertices when

moving diagonally. To solve this, this paper adopts a

redundant node deletion mechanism[10]. The specific

implementation involves using Manhattan distance and

Euclidean distance in segments to construct a "transition

route" for path compression: Euclidean distance is used in

obstacle-free areas to shorten the path, while Manhattan

distance is switched to in obstacle areas to avoid collisions.

The implementation principle is shown in Figure 2:

Draw a straight line from the start point to each node on the

path to establish a "transition route". If the straight line does

not pass through obstacles, continue the same operation for

the next node, and the "transition route" formed by the

previous nodes becomes invalid; if the straight line passes

through obstacles, the "transition route" is regarded as a

"dangerous route", return to the previous node, use the

"transition route" formed by the previous node as the "final

route", and take this node as the new start node, continue to

repeat the above operation to delete redundant nodes until the

end point. The path optimized by the redundant point deletion

mechanism gets rid of the limitation of traditional 8-

directional neighborhood search, reduces unnecessary path

node traversal, and makes the path look smoother and shorter.

The implementation effect is shown in Figure 3:

Fig.2 Redundant node deletion process

Fig.3 Effect of redundant node deletion

2.2. Multi-Scenario Algorithm Fusion Strategy

In actual operation scenarios of coil warehouses, the

number of tasks is not fixed. When there is a single coil

inbound/outbound task, the environment is static; in most

cases, there are multiple cranes and multiple coils per crane,

with fixed start or end points, making the environment a

combination of static and dynamic. For non-single coil tasks,

the completion of the previous coil inbound/outbound task is

equivalent to adding or removing obstacles, causing local

dynamic changes in the warehouse environment that require

map updates. To address these actual scenarios, this paper

proposes a multi-scenario hybrid strategy, implemented in

three steps: initial planning phase, re-planning phase, and path

optimization phase. These phases are respectively completed

by the improved A*, D* Lite, and B-spline interpolation

algorithms. In the initial path planning phase, the A*

algorithm is used to quickly generate a feasible path. In the

second phase, when new obstacles appear or the target

position changes (indicating environmental changes in the

warehouse), the D* Lite algorithm is used to dynamically re-

plan the locally changed path segment. In the third phase, the

path generated in the previous two phases is optimized using

B-spline interpolation for smoothness. B-spline curve

smoothing path[11] has the following advantages: local

control, high flexibility, and adaptability. The implementation

effect is shown in Figure 4 below:

Planning Route
Dangerous Route
Transition Route
Final Route

17

Fig.4 Implementation effect of the multi-scenario fusion algorithm

2.3. Quintic Polynomial Path Optimization

In actual operation scenarios of coil warehouses, various

factors affect path planning. The overall quality of the crane's

path depends not only on the algorithm but also on

mechanical kinematic constraints such as speed range,

acceleration limits, turning radius, and time cost. Therefore,

this paper proposes a quintic polynomial[12] for further path

optimization. The advantage of quintic polynomials is their

ability to simultaneously consider movement speed,

acceleration, turning radius, and algorithm time continuity,

making crane operation safer and more reliable. Their basic

forms are shown in equations (1) and (2):

X-axis:

𝑥(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5 (1)

Y-axis:

𝑦(𝑡) = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑡3 + 𝑏4𝑡4 + 𝑏5𝑡5 (2)

Where 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5are polynomial coefficients,

and t represents time. These functions describe the position

changes of the crane in the X and Y axes over time; different

coefficient combinations generate different routes. To

determine the coefficients, six boundary conditions are

required: initial position 𝑠(0) , end position 𝑠(𝑇) , initial

speed 𝑠′(0), end speed 𝑠′(𝑇), initial acceleration 𝑠′′(0), and

end acceleration 𝑠′′(𝑇).

The first derivative of equations (1) and (2) gives the

velocity function, and the second derivative gives the

acceleration function. Combining velocity and acceleration

values, the turning radius is obtained as in equation (3):

𝑟 =
(1 + (𝑦′)2)

3
2

|𝑦′′|
(3)

(The y − axis direction is the same as the x
− axis direction)

Based on actual crane operation data, the kinematic

constraint curves are shown in Fig. 5, Fig. 6, and Fig.7:

Fig.5 Speed-time curve

Fig.6 Acceleration-time curve

Fig. 7 Turning radius-time curve

The results of the above kinematic curves show that the

improved fusion algorithm meets various kinematic

constraints, which proves the effectiveness of the algorithm

improvement.

3. Experiments and Result Analysis

3.1. Experimental Environment and

Parameter Settings

To verify the effect of the improved and optimized

algorithm, a corresponding warehouse model was constructed

for testing. The experimental hardware environment is: Core

i7-8750H CPU @ 2.20GHz 12 threads, 16GB memory;

18

software environment: Windows 11, Pycharm 2021, Python

3.8.

3.2. Modeling and Simulation

The warehouse layout is shown in Fig. 8, with saddles fixed

on the ground and a total of 50*60 warehouse positions. The

crane is installed above the warehouse, spanning the positions,

and can move in three directions (X, Y, Z axes). Therefore, a

3D coordinate system model was established, with the

corresponding 2D ground model shown in Fig.9:

Fig.8 On-site diagram of warehouse position layout

Fig.9 2D modeling diagram of warehouse positions

3.3. Experimental Result Analysis

Based on the above research, this section uses inbound and

outbound scenarios to evaluate algorithm performance, with

four performance metrics: path length, search time, number

of turns, and number of searched grids. Experiments and

analyses were conducted on five algorithms: traditional A*

algorithm, traditional D* Lite algorithm, improved A*

algorithm, improved D* Lite algorithm, and the improved

fusion algorithm proposed in this paper. All data used in this

paper are real data from actual warehouse scenarios. Specific

simulation results are shown in Table 1 and Table 2:

Table 1. Algorithm performance in inbound experiments

Performance Parameter

Algorithm Type

Path length

/cm

Search time

/ms

Number of turns

/times
Number of searched grids/count

Traditional A* algorithm 57.94 35.00 31 562

Traditional D* Lite algorithm 56.85 36.00 28 485

Improved A* algorithm 48.87 33.56 21 486

Improved D* Lite algorithm 52.30 21.64 20 309

Improved fusion algorithm 48.59 15.71 21 167.20

Table 2. Algorithm performance in outbound experiments

Performance Parameter

Algorithm Type

Path length

/cm

Search time

/ms

Number of turns

/times

Number of searched

grids/count

Traditional A* algorithm 56.47 34.17 31 576

Traditional D* Lite algorithm 57.52 37.50 27 480

Improved A* algorithm 46.92 32.70 22 479

Improved D* Lite algorithm 50.76 20.28 20 302

Improved fusion algorithm 47.34 14.63 19 156.62

Table 3. Comprehensive evaluation indicators

Evaluation Indicator Inbound Improvement Outbound Improvement Average Improvement

Path length -15.65% -16.91% -16.28%

Search time -55.06% -57.18% -56.12%

Number of turns -32.26% -38.71% -35.49%

Number of searched grids -70.25% -72.81% -71.53%

Comprehensive average -43.31% -46.40% -44.86%

It can be seen from Table 3 that the improved fusion

algorithm has significantly improved the comprehensive

evaluation indicators compared with several other algorithms

during batch operations. Among them, due to the excellent

node reuse capability of the improved D* Lite algorithm, only

the first path spends the maximum time searching for the

number of grids during batch operations, so it has a significant

improvement effect. The comprehensive analysis results

show that the performance of various indicators of the

improved fusion algorithm has increased by about 40%.

4. Conclusion

Aiming at the problems existing in the hoisting path

planning of coil warehouses, this paper comprehensively

considers the shortcomings of algorithms and hardware

equipment, first improves the shortcomings of traditional

algorithms, then adaptively fuses the scenarios studied in this

paper, and proposes an AD* Lite fusion algorithm based on

kinematic constraints. The fusion algorithm can be applied to

scenarios where static and dynamic coexist. Additionally, a

quintic polynomial optimization strategy is proposed for

19

crane hardware, considering factors such as speed,

acceleration, and turning radius. Simulation experiments

show that the AD* Lite algorithm meets crane kinematic

constraints and improves various indicators such as path

length, search time, number of turns, and number of searched

grids by approximately 40%, successfully verifying its

adaptability and advantages in mixed static-dynamic

environments, making crane operation safer, more energy-

efficient, and more efficient.

References

[1] Salzmann T, Ivanovic B, Chakravarty P ,et al. Trajectron++:
Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data[J]. 2020.

[2] Yan J H, Liu C Y, Sun H X, et al. Research on Mobile Robot
Path Planning Algorithm Based on Improved A* Fused with
DWA[J]. Journal of Yuncheng University, 2024, 42(06): 45-51.

[3] Shi G J, Wang X W, Liu Q, et al. Robotic Arm Path Planning
Based on Greedy Strategy-Improved RRT* Algorithm[J].
Manufacturing Technology & Machine Tool, 2024, (09): 29-
35.

[4] Ren Q X, Feng F. 2D Path Planning for Robots Based on
Dijkstra Algorithm and APO[J]. Internet of Things
Technologies, 2025, 15(11): 80-83.

[5] Bagheri SM, Taghaddos H, Mousaei A, et al. An A-Star
algorithm for semi-optimization of crane location and
configuration in modular construction[J]. Automation in
Construction, 2021,121:103447.

[6] Wang J, Qiao L Y, Han H Z, et al. Mobile Robot Path Planning
Based on Improved D* Lite Algorithm[J]. China Sciencepaper,
2023,18(7):699-705.

[7] Fu Y J. Research on Path Planning of 6-DOF Industrial Robots
Based on Collision Detection[J]. Science & Technology
Information, 2024,22(14):37-39.

[8] Chao Y W, Yidan X, Jie Z. Voronoi treemap in Manhattan
distance and Chebyshev distance[J]. Information
Visualization,2023,22(3):246-264.

[9] Xiaohu H, Dezhi H, Hsiung T W, et al. A localization algorithm
for DV-Hop wireless sensor networks based on Manhattan
distance[J]. Telecommunication Systems,2022,81(2):207-224.

[10] Fu L, Liu F, Liu S Y, et al. Continuous Dynamic Path Planning
Algorithm in 2D Based on Improved D* Lite[J]. Radio
Communications Technology, 2023,49(6):1042-1051.

[11] Nguyen N T, Gangavarapu P T, Sahrhage A, et al. Navigation
with polytopes and B-spline path planner[C]//2023 IEEE
International Conference on Robotics and Automation (ICRA).
IEEE, 2023: 5695-5701.

[12] Li S Q, Ding X M. Trajectory Planning for Intelligent Vehicles
Based on Quintic Polynomials[J]. Journal of Jiangsu
University (Natural Science Edition),2023,44(04):392-398.

