Computer Life
ISSN: 1819-4818 | Vol. 13, No. 2, 2025

A Path Planning Algorithm for Unmanned Overhead
Cranes Integrating Improved A* and D* Lite with
Kinematic Optimization

Wubo Zhang

School of Anhui University of Technology, Anhui 10360, China

Abstract: Aiming at the problems of excessive redundant nodes, unsmooth paths, and poor adaptability to dynamic
environments in the path planning of unmanned cranes in coil warehouses, this paper proposes a hybrid path planning algorithm
(AD* Lite) integrating improved A* and D* Lite, along with a quintic polynomial kinematic optimization method. Firstly, a
collision detection mechanism is designed to prevent paths from passing through obstacle vertices, and a redundant node deletion
strategy is introduced to enhance path smoothness. Secondly, a multi-scenario adaptive hybrid algorithm is constructed by
combining the static planning advantages of the A* algorithm and the dynamic re-planning capability of the D* Lite algorithm.
Furthermore, quintic polynomials are used to optimize the path, integrating kinematic constraints such as speed, acceleration,
and turning radius. Experiments show that under the satisfaction of kinematic constraints, the improved fusion algorithm
improves various indicators such as path length, search time, number of turns, and number of searched grids by approximately
40%.

Keywords: Path Planning; A* Algorithm; D* Lite Algorithm; Quintic Polynomial; Kinematic Constraints.

1. Introduction 2. Hybrid Path Planning with
In the automation process of the steel industry, path |mprQV8d A* and D* Lite
planning for unmanned cranes in coil warehouses is a core Algorlth ms

technology. Traditional algorithms have problems such as
paths passing through obstacle vertices, excessive redundant
nodes, and single application scenarios. Improved fusion
algorithms based on traditional algorithms provide new ideas
for path planning. Salzmann et al. (2022)[1] proposed a
Transformer-based multimodal trajectory prediction model,
which solves the problem of generating dynamically feasible
paths by fusing visual, radar, and map data. However, the self-
attention mechanism leads to high inference latency, making
it difficult to meet the requirements of real-time path planning.
Yan Jianhong et al. (2024)[2] proposed a mobile robot path
planning algorithm that improves A* by fusing the Dynamic
Window Approach (DWA), addressing the issues of dense
turning points and excessive traversed nodes in the A*
algorithm's path planning process. Shi Gaojian et al. (2024)
proposed a greedy strategy-improved RRT* algorithm for
robotic arm path planning[3], which solves the problems of !) LR
suboptimal path quality and slow convergence speed but may mechanism[7] to solve this problem, which includes two key
have deficiencies in path optimality. Ren Qingxin et al. compgnents: a COll.IS'IOI’l detect’lon funct.lon and neighbor node
(2025)[4] proposed a robot 2D path planning method based selection. ”ljh'e colllslor} detection fupctlon undertakes the key
on Dijkstra's algorithm and the Arctic Puffin Optimization task of collision detectlgn, det;rmmmg whether the path from
(APO) algorithm, which optimizes path quality and planning the start to the end collides with obstacles. If the path passes
efficiency but has poor scalability and environmental through an Qbstacle vertex, the §urrent .node is replaf:ed with
adaptability. Currently, although A* and D* Lite algorithms a preset neighbor node. This is crucial for handling path
are mature, they still have issues in adaptability to static and corners and. quldlﬂg crossing Qbstagle vertices. The nelghbor
dynamic environments and path turning smoothness, and node function is used to obtain neighbor nodes of a given
neither considers crane kinematic constraints (such as speed podp S COHSldermg obstac.les during selec.tlon, which
and acceleration limits). Through analyzing actual scenario indirectly helps avoid crossing obstacle vertices at path

requirements, it is found that existing algorithms have room corners. The specific method is as follows:
for improvement in complex scenario adaptability and First, check whether the two endpoints of the start and end

feasibility under multiple constraints. points are obstacles themselves. If either point is in the
obstacle set, it is directly determined that there is a collision.
Then, for the case where the non-endpoint is directly an

Traditional A*[5] and D* Lite algorithms[6] are
respectively suitable for static and dynamic scenarios, with
single application scenarios. Additionally, these algorithms
have problems such as excessive redundant nodes in planned
paths, unsmooth paths, and failure to consider kinematic
constraints. To solve these problems, this paper proposes a
hybrid path planning method based on improved A* and D*
Lite algorithms, incorporating multiple constraints to ensure
algorithm reliability.

2.1. Improvements to Traditional Algorithms

2.1.1. Collision Detection Mechanism

When traditional algorithms use 4-directional or 8-
directional neighborhoods, paths often pass through obstacle
vertices during turns, which is dangerous in practical
scenarios. This paper adopts a collision detection

15

obstacle, further determine whether the line between the two
points intersects with the obstacle. Especially when the two
points are on different abscissas and ordinates (i.e., not
adjacent points in the horizontal or vertical direction), it will
indirectly determine whether the line intersects with the
obstacle by judging whether the diagonal vertices sl and s2
of the rectangle formed by these two points are in the obstacle
set. If s1 or s2 is in the obstacle set, it means that the line
collides with the obstacle; if no collision is found after all the
above detections, it indicates that the path between the two
points is collision-free. The performance of the collision
detection mechanism is shown in Figure 1:

| |
. /
/
u /
[| |
. E—

| [| [|
[| [|
| |
| [|
| [|

Fig.1 Performance of the collision detection mechanism

2.1.2. Redundant Node Deletion
When calculating paths using Manhattan distance[8], the

search direction is limited to 4 directions, resulting in many
right-angle inflection points. Although using 8-directional
neighborhoods with Euclidean distance[9] effectively reduces
right angles, paths may pass through obstacle vertices when
moving diagonally. To solve this, this paper adopts a
redundant node deletion mechanism[10]. The specific
implementation involves using Manhattan distance and
Euclidean distance in segments to construct a "transition
route" for path compression: Euclidean distance is used in
obstacle-free areas to shorten the path, while Manhattan
distance is switched to in obstacle areas to avoid collisions.
The implementation principle is shown in Figure 2:

Draw a straight line from the start point to each node on the
path to establish a "transition route". If the straight line does
not pass through obstacles, continue the same operation for
the next node, and the "transition route" formed by the
previous nodes becomes invalid; if the straight line passes
through obstacles, the "transition route" is regarded as a
"dangerous route", return to the previous node, use the
"transition route" formed by the previous node as the "final
route", and take this node as the new start node, continue to
repeat the above operation to delete redundant nodes until the
end point. The path optimized by the redundant point deletion
mechanism gets rid of the limitation of traditional 8-
directional neighborhood search, reduces unnecessary path
node traversal, and makes the path look smoother and shorter.
The implementation effect is shown in Figure 3:

4

hal

r

/

h

o

A
1\
=3
£

'Nz l;:rl"*
0 L=

--------- Dangerous Route
Transition Route

— = = Final Route

29

5 6 7 8

Fig.2 Redundant node deletion process

il

- -~ Raw Path
—— Smoothed Path

@ Start

l - @ Goal

o

Fig.3 Effect of redundant node deletion

2.2. Multi-Scenario Algorithm Fusion Strategy

In actual operation scenarios of coil warehouses, the
number of tasks is not fixed. When there is a single coil
inbound/outbound task, the environment is static; in most
cases, there are multiple cranes and multiple coils per crane,
with fixed start or end points, making the environment a
combination of static and dynamic. For non-single coil tasks,

16

the completion of the previous coil inbound/outbound task is
equivalent to adding or removing obstacles, causing local
dynamic changes in the warehouse environment that require
map updates. To address these actual scenarios, this paper
proposes a multi-scenario hybrid strategy, implemented in
three steps: initial planning phase, re-planning phase, and path
optimization phase. These phases are respectively completed
by the improved A*, D* Lite, and B-spline interpolation
algorithms. In the initial path planning phase, the A*
algorithm is used to quickly generate a feasible path. In the
second phase, when new obstacles appear or the target
position changes (indicating environmental changes in the
warehouse), the D* Lite algorithm is used to dynamically re-
plan the locally changed path segment. In the third phase, the
path generated in the previous two phases is optimized using
B-spline interpolation for smoothness. B-spline curve
smoothing path[11] has the following advantages: local
control, high flexibility, and adaptability. The implementation
effect is shown in Figure 4 below:

Path fusion(A* + 0* Lite)

28 1 ——- Raw Path

7 | ==- smoothed Fath {Codel]
26+ —— B-Splines Path

[@ Start

[@ Goal

E-JUTNTRFAT I PN

95

P ammm

Fig.4 Implementation effect of the multi-scenario fusion algorithm

2.3. Quintic Polynomial Path Optimization

In actual operation scenarios of coil warehouses, various
factors affect path planning. The overall quality of the crane's
path depends not only on the algorithm but also on
mechanical kinematic constraints such as speed range,
acceleration limits, turning radius, and time cost. Therefore,
this paper proposes a quintic polynomial[12] for further path
optimization. The advantage of quintic polynomials is their
ability to simultaneously consider movement speed,
acceleration, turning radius, and algorithm time continuity,
making crane operation safer and more reliable. Their basic
forms are shown in equations (1) and (2):

X-axis:

x(t) = ag + ayt + ayt? + ast3 + a,t* + agt® ¢))
Y-axis:
y(t) = by + byt + byt? + byt + byt* + bst> (2)

Where a,, a;, a,, as, a,, asare polynomial coefficients,
and t represents time. These functions describe the position
changes of the crane in the X and Y axes over time; different
coefficient combinations generate different routes. To
determine the coefficients, six boundary conditions are
required: initial position s(0), end position s(T), initial
speed s'(0), end speed s'(T), initial acceleration s''(0), and
end acceleration s"'(T).

The first derivative of equations (1) and (2) gives the
velocity function, and the second derivative gives the
acceleration function. Combining velocity and acceleration
values, the turning radius is obtained as in equation (3):

3
1+ "%z
r= n
Iy
(The y — axis direction is the same as the x
— axis direction)

Based on actual crane operation data, the kinematic
constraint curves are shown in Fig. 5, Fig. 6, and Fig.7:

3)

17

) Figure 3 - (=] X

Speed Profile

—==- Max Accel Limit

Speed[m/s]

0 20 40 60 80
Time[s]
#| €3] +Q/=] B

x=46.8 y=0. 530

Fig.5 Speed-time curve

Acceleration Profile

0.4

0.2 4

Acceleration[m/ss]
o
=

|
<
N)

—0.4 4

0 20 40 60 80
Timels]

€3] plQ|= B

Fig.6 Acceleration-time curve

x=13. 5 y=0. 046

&%) Figure 3 = o X

Yaw Angle Profile

NSNS

0 20 40 60 80

Time[s]
&lels ¢lal= |

Yaw Angle[deg]
e
v (=] w
o o o o

|
w
=]

-100

—150

¥=66. 4 y==120. 9
Fig. 7 Turning radius-time curve

The results of the above kinematic curves show that the
improved fusion algorithm meets various kinematic
constraints, which proves the effectiveness of the algorithm
improvement.

3. Experiments and Result Analysis

3.1. Experimental Environment and
Parameter Settings

To verify the effect of the improved and optimized
algorithm, a corresponding warehouse model was constructed
for testing. The experimental hardware environment is: Core
i7-8750H CPU @ 2.20GHz 12 threads, 16GB memory;

software environment: Windows 11, Pycharm 2021, Python
3.8.

3.2. Modeling and Simulation

The warehouse layout is shown in Fig. 8, with saddles fixed
on the ground and a total of 50*60 warehouse positions. The
crane is installed above the warehouse, spanning the positions,
and can move in three directions (X, Y, Z axes). Therefore, a
3D coordinate system model was established, with the
corresponding 2D ground model shown in Fig.9:

Fig.8 On-site diagram of warehouse position layout

o

3 H N

o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig.9 2D modeling diagram of warehouse positions

3.3. Experimental Result Analysis

Based on the above research, this section uses inbound and
outbound scenarios to evaluate algorithm performance, with
four performance metrics: path length, search time, number
of turns, and number of searched grids. Experiments and
analyses were conducted on five algorithms: traditional A*
algorithm, traditional D* Lite algorithm, improved A*
algorithm, improved D* Lite algorithm, and the improved
fusion algorithm proposed in this paper. All data used in this
paper are real data from actual warehouse scenarios. Specific
simulation results are shown in Table 1 and Table 2:

Table 1. Algorithm performance in inbound experiments

formance Parameter Path length Search time Number of turns .
. . Number of searched grids/count
Algorithm Type /cm /ms /times
Traditional A* algorithm 57.94 35.00 31 562
Traditional D* Lite algorithm 56.85 36.00 28 485
Improved A* algorithm 48.87 33.56 21 486
Improved D* Lite algorithm 52.30 21.64 20 309
Improved fusion algorithm 48.59 15.71 21 167.20

Table 2. Algorithm performance in outbound experiments

formance Parameter Path length Search time Number of turns Number of searched
Algorithm Type /em /ms /times grids/count
Traditional A* algorithm 56.47 34.17 31 576
Traditional D* Lite algorithm 57.52 37.50 27 480
Improved A* algorithm 46.92 32.70 22 479
Improved D* Lite algorithm 50.76 20.28 20 302
Improved fusion algorithm 47.34 14.63 19 156.62

Table 3. Comprehensive evaluation indicators

Evaluation Indicator Inbound Improvement Outbound Improvement Average Improvement
Path length -15.65% -16.91% -16.28%
Search time -55.06% -57.18% -56.12%

Number of turns -32.26% -38.71% -35.49%
Number of searched grids -70.25% -72.81% -71.53%
Comprehensive average -43.31% -46.40% -44.86%

It can be seen from Table 3 that the improved fusion
algorithm has significantly improved the comprehensive
evaluation indicators compared with several other algorithms
during batch operations. Among them, due to the excellent
node reuse capability of the improved D* Lite algorithm, only
the first path spends the maximum time searching for the
number of grids during batch operations, so it has a significant
improvement effect. The comprehensive analysis results
show that the performance of various indicators of the
improved fusion algorithm has increased by about 40%.

18

4. Conclusion

Aiming at the problems existing in the hoisting path
planning of coil warehouses, this paper comprehensively
considers the shortcomings of algorithms and hardware
equipment, first improves the shortcomings of traditional
algorithms, then adaptively fuses the scenarios studied in this
paper, and proposes an AD* Lite fusion algorithm based on
kinematic constraints. The fusion algorithm can be applied to
scenarios where static and dynamic coexist. Additionally, a
quintic polynomial optimization strategy is proposed for

crane hardware, considering factors such as speed,
acceleration, and turning radius. Simulation experiments
show that the AD* Lite algorithm meets crane kinematic
constraints and improves various indicators such as path
length, search time, number of turns, and number of searched
grids by approximately 40%, successfully verifying its
adaptability and advantages in mixed static-dynamic
environments, making crane operation safer, more energy-
efficient, and more efficient.

References
[1]

Salzmann T, lvanovic B, Chakravarty P et al. Trajectron++:
Dynamically-Feasible ~ Trajectory Forecasting ~ With

Heterogeneous Data[J]. 2020.

Yan J H, Liu CY, Sun H X, et al. Research on Mobile Robot
Path Planning Algorithm Based on Improved A* Fused with

(2]

DWA[J]. Journal of Yuncheng University, 2024, 42(06): 45-51.

[3] Shi G J, Wang X W, Liu Q, et al. Robotic Arm Path Planning
Based on Greedy Strategy-Improved RRT* Algorithm[J].
Manufacturing Technology & Machine Tool, 2024, (09): 29-

35.

Ren Q X, Feng F. 2D Path Planning for Robots Based on
Dijkstra Algorithm and APO[J]. Internet of Things
Technologies, 2025, 15(11): 80-83.

[4]

19

(5]

(6]

[7]

(8]

(9]

(10]

(11]

[12]

Bagheri SM, Taghaddos H, Mousaei A, et al. An A-Star
algorithm for semi-optimization of crane location and
configuration in modular construction[J]. Automation in
Construction, 2021,121:103447.

Wang J, Qiao L Y, Han H Z, et al. Mobile Robot Path Planning
Based on Improved D* Lite Algorithm[J]. China Sciencepaper,
2023,18(7):699-705.

Fu Y J. Research on Path Planning of 6-DOF Industrial Robots
Based on Collision Detection[J]. Science & Technology
Information, 2024,22(14):37-39.

Chao Y W, Yidan X, Jie Z. Voronoi treemap in Manhattan
distance and Chebyshev distance[J]. Information
Visualization,2023,22(3):246-264.

Xiaohu H, Dezhi H, Hsiung T W, et al. A localization algorithm
for DV-Hop wireless sensor networks based on Manhattan
distance[J]. Telecommunication Systems,2022,81(2):207-224.

FuL, LiuF, LiuSY, etal. Continuous Dynamic Path Planning
Algorithm in 2D Based on Improved D* Lite[J]. Radio
Communications Technology, 2023,49(6):1042-1051.

Nguyen N T, Gangavarapu P T, Sahrhage A, et al. Navigation
with polytopes and B-spline path planner[C]//2023 IEEE
International Conference on Robotics and Automation (ICRA).
IEEE, 2023: 5695-5701.

Li S Q, Ding X M. Trajectory Planning for Intelligent Vehicles
Based on Quintic Polynomials[J]. Journal of Jiangsu
University (Natural Science Edition),2023,44(04):392-398.

