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Abstract: Aiming at the problems of excessive redundant nodes, unsmooth paths, and poor adaptability to dynamic 

environments in the path planning of unmanned cranes in coil warehouses, this paper proposes a hybrid path planning algorithm 

(AD* Lite) integrating improved A* and D* Lite, along with a quintic polynomial kinematic optimization method. Firstly, a 

collision detection mechanism is designed to prevent paths from passing through obstacle vertices, and a redundant node deletion 

strategy is introduced to enhance path smoothness. Secondly, a multi-scenario adaptive hybrid algorithm is constructed by 

combining the static planning advantages of the A* algorithm and the dynamic re-planning capability of the D* Lite algorithm. 

Furthermore, quintic polynomials are used to optimize the path, integrating kinematic constraints such as speed, acceleration, 

and turning radius. Experiments show that under the satisfaction of kinematic constraints, the improved fusion algorithm 

improves various indicators such as path length, search time, number of turns, and number of searched grids by approximately 

40%. 
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1. Introduction 

In the automation process of the steel industry, path 

planning for unmanned cranes in coil warehouses is a core 

technology. Traditional algorithms have problems such as 

paths passing through obstacle vertices, excessive redundant 

nodes, and single application scenarios. Improved fusion 

algorithms based on traditional algorithms provide new ideas 

for path planning. Salzmann et al. (2022)[1] proposed a 

Transformer-based multimodal trajectory prediction model, 

which solves the problem of generating dynamically feasible 

paths by fusing visual, radar, and map data. However, the self-

attention mechanism leads to high inference latency, making 

it difficult to meet the requirements of real-time path planning. 

Yan Jianhong et al. (2024)[2] proposed a mobile robot path 

planning algorithm that improves A* by fusing the Dynamic 

Window Approach (DWA), addressing the issues of dense 

turning points and excessive traversed nodes in the A* 

algorithm's path planning process. Shi Gaojian et al. (2024) 

proposed a greedy strategy-improved RRT* algorithm for 

robotic arm path planning[3], which solves the problems of 

suboptimal path quality and slow convergence speed but may 

have deficiencies in path optimality. Ren Qingxin et al. 

(2025)[4] proposed a robot 2D path planning method based 

on Dijkstra's algorithm and the Arctic Puffin Optimization 

(APO) algorithm, which optimizes path quality and planning 

efficiency but has poor scalability and environmental 

adaptability. Currently, although A* and D* Lite algorithms 

are mature, they still have issues in adaptability to static and 

dynamic environments and path turning smoothness, and 

neither considers crane kinematic constraints (such as speed 

and acceleration limits). Through analyzing actual scenario 

requirements, it is found that existing algorithms have room 

for improvement in complex scenario adaptability and 

feasibility under multiple constraints. 

2. Hybrid Path Planning with 
Improved A* and D* Lite 
Algorithms 

Traditional A*[5] and D* Lite algorithms[6] are 

respectively suitable for static and dynamic scenarios, with 

single application scenarios. Additionally, these algorithms 

have problems such as excessive redundant nodes in planned 

paths, unsmooth paths, and failure to consider kinematic 

constraints. To solve these problems, this paper proposes a 

hybrid path planning method based on improved A* and D* 

Lite algorithms, incorporating multiple constraints to ensure 

algorithm reliability. 

2.1. Improvements to Traditional Algorithms 

2.1.1. Collision Detection Mechanism 

When traditional algorithms use 4-directional or 8-

directional neighborhoods, paths often pass through obstacle 

vertices during turns, which is dangerous in practical 

scenarios. This paper adopts a collision detection 

mechanism[7] to solve this problem, which includes two key 

components: a collision detection function and neighbor node 

selection. The collision detection function undertakes the key 

task of collision detection, determining whether the path from 

the start to the end collides with obstacles. If the path passes 

through an obstacle vertex, the current node is replaced with 

a preset neighbor node. This is crucial for handling path 

corners and avoiding crossing obstacle vertices. The neighbor 

node function is used to obtain neighbor nodes of a given 

node s, considering obstacles during selection, which 

indirectly helps avoid crossing obstacle vertices at path 

corners. The specific method is as follows: 

First, check whether the two endpoints of the start and end 

points are obstacles themselves. If either point is in the 

obstacle set, it is directly determined that there is a collision. 

Then, for the case where the non-endpoint is directly an 
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obstacle, further determine whether the line between the two 

points intersects with the obstacle. Especially when the two 

points are on different abscissas and ordinates (i.e., not 

adjacent points in the horizontal or vertical direction), it will 

indirectly determine whether the line intersects with the 

obstacle by judging whether the diagonal vertices s1 and s2 

of the rectangle formed by these two points are in the obstacle 

set. If s1 or s2 is in the obstacle set, it means that the line 

collides with the obstacle; if no collision is found after all the 

above detections, it indicates that the path between the two 

points is collision-free. The performance of the collision 

detection mechanism is shown in Figure 1:  

 

Fig.1 Performance of the collision detection mechanism 

2.1.2. Redundant Node Deletion 

When calculating paths using Manhattan distance[8], the 

search direction is limited to 4 directions, resulting in many 

right-angle inflection points. Although using 8-directional 

neighborhoods with Euclidean distance[9] effectively reduces 

right angles, paths may pass through obstacle vertices when 

moving diagonally. To solve this, this paper adopts a 

redundant node deletion mechanism[10]. The specific 

implementation involves using Manhattan distance and 

Euclidean distance in segments to construct a "transition 

route" for path compression: Euclidean distance is used in 

obstacle-free areas to shorten the path, while Manhattan 

distance is switched to in obstacle areas to avoid collisions. 

The implementation principle is shown in Figure 2: 

Draw a straight line from the start point to each node on the 

path to establish a "transition route". If the straight line does 

not pass through obstacles, continue the same operation for 

the next node, and the "transition route" formed by the 

previous nodes becomes invalid; if the straight line passes 

through obstacles, the "transition route" is regarded as a 

"dangerous route", return to the previous node, use the 

"transition route" formed by the previous node as the "final 

route", and take this node as the new start node, continue to 

repeat the above operation to delete redundant nodes until the 

end point. The path optimized by the redundant point deletion 

mechanism gets rid of the limitation of traditional 8-

directional neighborhood search, reduces unnecessary path 

node traversal, and makes the path look smoother and shorter. 

The implementation effect is shown in Figure 3:

 

Fig.2 Redundant node deletion process 

 

Fig.3 Effect of redundant node deletion 

2.2. Multi-Scenario Algorithm Fusion Strategy 

In actual operation scenarios of coil warehouses, the 

number of tasks is not fixed. When there is a single coil 

inbound/outbound task, the environment is static; in most 

cases, there are multiple cranes and multiple coils per crane, 

with fixed start or end points, making the environment a 

combination of static and dynamic. For non-single coil tasks, 

the completion of the previous coil inbound/outbound task is 

equivalent to adding or removing obstacles, causing local 

dynamic changes in the warehouse environment that require 

map updates. To address these actual scenarios, this paper 

proposes a multi-scenario hybrid strategy, implemented in 

three steps: initial planning phase, re-planning phase, and path 

optimization phase. These phases are respectively completed 

by the improved A*, D* Lite, and B-spline interpolation 

algorithms. In the initial path planning phase, the A* 

algorithm is used to quickly generate a feasible path. In the 

second phase, when new obstacles appear or the target 

position changes (indicating environmental changes in the 

warehouse), the D* Lite algorithm is used to dynamically re-

plan the locally changed path segment. In the third phase, the 

path generated in the previous two phases is optimized using 

B-spline interpolation for smoothness. B-spline curve 

smoothing path[11] has the following advantages: local 

control, high flexibility, and adaptability. The implementation 

effect is shown in Figure 4 below: 

 

Planning Route 
Dangerous Route 
Transition Route 
Final Route 
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Fig.4 Implementation effect of the multi-scenario fusion algorithm 

2.3. Quintic Polynomial Path Optimization 

In actual operation scenarios of coil warehouses, various 

factors affect path planning. The overall quality of the crane's 

path depends not only on the algorithm but also on 

mechanical kinematic constraints such as speed range, 

acceleration limits, turning radius, and time cost. Therefore, 

this paper proposes a quintic polynomial[12] for further path 

optimization. The advantage of quintic polynomials is their 

ability to simultaneously consider movement speed, 

acceleration, turning radius, and algorithm time continuity, 

making crane operation safer and more reliable. Their basic 

forms are shown in equations (1) and (2): 

X-axis: 

𝑥(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5 (1) 

Y-axis: 

𝑦(𝑡) = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑡3 + 𝑏4𝑡4 + 𝑏5𝑡5 (2) 

Where 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5are polynomial coefficients, 

and t represents time. These functions describe the position 

changes of the crane in the X and Y axes over time; different 

coefficient combinations generate different routes. To 

determine the coefficients, six boundary conditions are 

required: initial position 𝑠(0) , end position 𝑠(𝑇) , initial 

speed 𝑠′(0), end speed 𝑠′(𝑇), initial acceleration 𝑠′′(0), and 

end acceleration 𝑠′′(𝑇). 

The first derivative of equations (1) and (2) gives the 

velocity function, and the second derivative gives the 

acceleration function. Combining velocity and acceleration 

values, the turning radius is obtained as in equation (3): 

𝑟 =
(1 + (𝑦′)2)

3
2

|𝑦′′|
(3) 

(The y − axis direction is the same as the x
− axis direction) 

Based on actual crane operation data, the kinematic 

constraint curves are shown in Fig. 5, Fig. 6, and Fig.7: 

 

Fig.5 Speed-time curve 

 

Fig.6 Acceleration-time curve 

 

Fig. 7 Turning radius-time curve 

The results of the above kinematic curves show that the 

improved fusion algorithm meets various kinematic 

constraints, which proves the effectiveness of the algorithm 

improvement. 

3. Experiments and Result Analysis 

3.1. Experimental Environment and 

Parameter Settings 

To verify the effect of the improved and optimized 

algorithm, a corresponding warehouse model was constructed 

for testing. The experimental hardware environment is: Core 

i7-8750H CPU @ 2.20GHz 12 threads, 16GB memory; 



 

18 

software environment: Windows 11, Pycharm 2021, Python 

3.8. 

3.2. Modeling and Simulation 

The warehouse layout is shown in Fig. 8, with saddles fixed 

on the ground and a total of 50*60 warehouse positions. The 

crane is installed above the warehouse, spanning the positions, 

and can move in three directions (X, Y, Z axes). Therefore, a 

3D coordinate system model was established, with the 

corresponding 2D ground model shown in Fig.9: 

 

Fig.8 On-site diagram of warehouse position layout 

 

Fig.9 2D modeling diagram of warehouse positions 

3.3. Experimental Result Analysis 

Based on the above research, this section uses inbound and 

outbound scenarios to evaluate algorithm performance, with 

four performance metrics: path length, search time, number 

of turns, and number of searched grids. Experiments and 

analyses were conducted on five algorithms: traditional A* 

algorithm, traditional D* Lite algorithm, improved A* 

algorithm, improved D* Lite algorithm, and the improved 

fusion algorithm proposed in this paper. All data used in this 

paper are real data from actual warehouse scenarios. Specific 

simulation results are shown in Table 1 and Table 2: 

Table 1. Algorithm performance in inbound experiments 

Performance Parameter 

Algorithm Type 

Path length 

/cm 

Search time 

/ms 

Number of turns 

/times 
Number of searched grids/count 

Traditional A* algorithm 57.94 35.00 31 562 

Traditional D* Lite algorithm 56.85 36.00 28 485 

Improved A* algorithm 48.87 33.56 21 486 

Improved D* Lite algorithm 52.30 21.64 20 309 

Improved fusion algorithm 48.59 15.71 21 167.20 

Table 2. Algorithm performance in outbound experiments 

Performance Parameter 

Algorithm Type 

Path length 

/cm 

Search time 

/ms 

Number of turns 

/times 

Number of searched 

grids/count 

Traditional A* algorithm 56.47 34.17 31 576 

Traditional D* Lite algorithm 57.52 37.50 27 480 

Improved A* algorithm 46.92 32.70 22 479 

Improved D* Lite algorithm 50.76 20.28 20 302 

Improved fusion algorithm 47.34 14.63 19 156.62 

Table 3. Comprehensive evaluation indicators 

Evaluation Indicator Inbound Improvement Outbound Improvement Average Improvement 

Path length -15.65% -16.91% -16.28% 

Search time -55.06% -57.18% -56.12% 

Number of turns -32.26% -38.71% -35.49% 

Number of searched grids -70.25% -72.81% -71.53% 

Comprehensive average -43.31% -46.40% -44.86% 

It can be seen from Table 3 that the improved fusion 

algorithm has significantly improved the comprehensive 

evaluation indicators compared with several other algorithms 

during batch operations. Among them, due to the excellent 

node reuse capability of the improved D* Lite algorithm, only 

the first path spends the maximum time searching for the 

number of grids during batch operations, so it has a significant 

improvement effect. The comprehensive analysis results 

show that the performance of various indicators of the 

improved fusion algorithm has increased by about 40%. 

4. Conclusion 

Aiming at the problems existing in the hoisting path 

planning of coil warehouses, this paper comprehensively 

considers the shortcomings of algorithms and hardware 

equipment, first improves the shortcomings of traditional 

algorithms, then adaptively fuses the scenarios studied in this 

paper, and proposes an AD* Lite fusion algorithm based on 

kinematic constraints. The fusion algorithm can be applied to 

scenarios where static and dynamic coexist. Additionally, a 

quintic polynomial optimization strategy is proposed for 
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crane hardware, considering factors such as speed, 

acceleration, and turning radius. Simulation experiments 

show that the AD* Lite algorithm meets crane kinematic 

constraints and improves various indicators such as path 

length, search time, number of turns, and number of searched 

grids by approximately 40%, successfully verifying its 

adaptability and advantages in mixed static-dynamic 

environments, making crane operation safer, more energy-

efficient, and more efficient. 
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