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Abstract: Existing Transformer-based image super-resolution reconstruction methods suffer from excessive parameters and 

high training costs. To address these issues, we propose a lightweight CNN-Transformer-based image super-resolution 

reconstruction method. A CNN-Transformer module is designed using weight sharing, and a channel attention module is used to 

fully fuse image information, which improves the reconstruction of local and global features of the image. Meanwhile, depth-

wise separable convolutions are used and the covariance matrix of cross-channel self-attention is calculated, which effectively 

reduces the number of parameters in the Transformer and lowers the computational cost. Then, a High-Frequency Residual Block 

(HFRB) is introduced to further focus on the texture and detail information in the high-frequency range. Finally, the choice of 

activation function required for Transformer to generate self-attention is discussed. Analysis shows that the GELU activation 

function can better promote feature aggregation and improve network performance. Experiments show that the method in this 

paper can effectively reconstruct more texture and details of the image while maintaining lightweight. 
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1. Introduction 

Image super-resolution (SR) reconstruction, which aims to 

reconstruct high-resolution (HR) images from single or 

multiple low-resolution (LR) images, is one of the hottest 

research topics in computer vision. It has been widely applied 

in various fields such as surveillance [1], medical diagnosis 

[2], and remote sensing [3]. Due to the ill-posed nature of 

image super-resolution reconstruction and the increasing 

severity of artifacts, edge blurring, and pixel loss with the 

increase of the upscaling factor, image super-resolution 

reconstruction remains a challenging problem. 

With the breakthrough advancements of deep learning in 

computer vision, researchers have introduced it into the field 

of image super-resolution reconstruction, achieving 

significantly better visual results compared to traditional 

interpolation or reconstruction-based methods. To further 

improve reconstruction performance, researchers have 

proposed numerous deeper or wider network models. Inspired 

by the residual learning idea, Kim et al. designed VDSR [4], 

expanding a 3-layer convolutional network to 20 layers. Lai 

et al. proposed LapSRN (Laplacian Pyramid Super-

Resolution Network) using a progressive reconstruction 

strategy. Zhang et al. proposed RCAN (Residual Channel 

Attention Networks) by utilizing residual connections and 

channel attention [5]. Zhang et al. also proposed RDN 

(Residual Dense Network) by combining residual 

connections and dense connections. Mei et al. designed NISA 

(Non-local Sparse Attention) using dynamic sparse attention 

and non-local sparse attention [6]. Wu et al. proposed 

MSNLAN (Multi-scale Non-local Attention Network) [7] by 

combining multi-scale ideas and non-local attention 

mechanisms. 

Although increasing the depth or width of the network can 

improve reconstruction performance, it also leads to an 

increase in the number of parameters and higher memory 

consumption. Consequently, researchers have begun to 

explore reconstruction methods that reduce network size. 

Among these, introducing a recursive mechanism is one 

strategy for achieving lightweight networks. Kim et al. 

adopted the recursive idea and proposed DRCN (Deeply-

Recursive Convolutional Network) [8]. Based on this, Tai et 

al. incorporated the residual learning concept and proposed 

DRRN (Deep Recursive Residual Network) [9].  

Recursive structures can reduce the number of network 

weights to some extent, they still fail to significantly decrease 

the computational cost of the network. Therefore, balancing 

the number of network weights and reconstruction 

performance, and constructing lightweight networks have 

become the mainstream of current deep learning research. Hui 

et al., based on the idea of information distillation, proposed 

IMDN (Lightweight Information Multi-Distillation Network) 

[10]. Zha et al., utilizing dense connections and attention 

mechanisms, proposed LDCASR (Lightweight Dense 

Connected Approach with Attention for Single Image Super-

Resolution) [11]. Furthermore, Lan et al., combining the idea 

of multi-scale processing, proposed MADNet[12]. Peng et al., 

using skip residual connections and channel attention, 

designed LCRCA (Lightweight Skip Concatenated Residual 

Channel Attention Network)[13]. Feng et al. proposed a 

lightweight image super-resolution network based on regional 

complementary attention and multi-dimensional attention 

(RCA-MDA) [14]. Gao et al., utilizing lightweight residual 

blocks and convolutional blocks, proposed VLESR (Very 

Lightweight and Efficient Image Super-Resolution Network) 

[15]. 

With the successful application of Transformers [2] in 

natural language processing, researchers have introduced 

them into the field of computer vision and achieved 

breakthrough progress. Unlike traditional CNNs that mainly 
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extract local features, the core idea of Transformers is to 

extract global feature information through self-attention 

mechanisms. In particular, in the field of image super-

resolution reconstruction, researchers have combined CNNs 

and Transformers to extract richer feature information. Wang 

et al. introduced multi-scale processing into Transformers and 

proposed MSTN (Multi-scale Multi-stage Single Image 

Super-Resolution Reconstruction Algorithm Based on 

Transformer) [16]. Lu et al. fused lightweight CNNs and 

Transformers and proposed ESRT (Efficient Super-

Resolution Transformer) [17]. Fang et al. introduced an 

enhanced spatial attention mechanism and proposed HNCT 

(Hybrid Network of CNN and Transformer) [18]. Li et al., 

based on Restormer, proposed DLGSANet (Effective 

Lightweight Dynamic Local and Global Self-Attention 

Network) [19]. The aforementioned networks, combining 

CNNs and Transformers, have achieved significant 

improvements in reconstruction performance and visual 

effects. 

The reconstruction methods based on CNNs and 

Transformers mainly adopt a single-branch network structure, 

which has problems such as insufficient utilization and fusion 

of extracted information. Moreover, during the process of 

extracting global information, Transformers tend to ignore the 

texture details in high-frequency regions. Therefore, this 

paper proposes an Image Super-Resolution Reconstruction 

Method Based on Lightweight CNN-Transformer (LCT). 

2. Image super-resolution 
reconstruction method based on 
lightweight CNN-Transformer 

The Image Super-Resolution Reconstruction Method 

Based on Lightweight CNN-Transformer (LCT) has a 

structure as shown in Figure 1. LCT includes a shallow 

feature extraction module, a CNN-Transformer module, a 

Deep Feature Fusion (DFF) module, and an upsampling 

reconstruction module. 
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Figure 1. Structure of LSCT 

First, given the input low-resolution image LR
I , shallow 

features 0
F  are extracted through a 3 × 3 convolution. Then,

0
F   is passed to the CNN-Transformer module for deep 

feature extraction, which yields deep features: 

( )0CNN-Transformer n
F F F=  . where CNN-Transformer

( )F   

represents the CNN-Transformer module. Then, n
F   is 

passed to the DFF module to smooth, refine and densely fuse 

the deep features to obtain densely fused features: 

3 3 1 1 0
*( * )

DFF n
F Conv Conv F F

 
= +  . Finally, DFF

F  

is input into the upsampling reconstruction module to obtain 

the reconstructed image: 3 3SR UP DFF
( * )I F Conv F


=  . 

Where UP
F  is the sub-pixel convolution. 

2.1. CNN-Transformer Module 

The CNN-Transformer module consists of a Hybrid 

Feature Fusion Block (HFFB)[20] and a Channel Attention 

Block (CA)[21]. To reduce the number of computational 

parameters, the two HFFBs share weight values. The specific 

structure of the CA block is illustrated in Figure 2. 

Specifically, the output feature n
F   of the CNN-

Transformer module is the concatenation of the feature 

outputs of each HFFB in the upper and lower branches. The 

output feature after the i-th HFFB in the upper branch is:
1 2 3, , ,

HFFB HFFB HFFB
( ), , , ,U i U i U iF f F i n−= = . 

Where 
,

HFFB
( )U if    represents the operation of the i-th 

HFFB in the upper branch. The output feature after the i-th 

HFFB in the lower branch is:  
1 2 3, , , ,

HFFB HFFB HFFB CA HFFB
( ( )), , , ,D i D i D i i U iF f F f F i n−= + = . 

where 
,

 HFFB
( )D if    represents the operation of the i-th 

HFFB in the lower branch, and 
 CA

( )if    represents the 

operation of the i-th CA. 
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1×1 Conv

ReLU

1×1 Conv

Residual Connection

 
Figure 2. Structure of CA. 

he Channel Attention (CA) block first applies global 

average pooling to compute the mean value of all elements 

within each channel. Then, 1×1 convolution are used to 

reduce the dimensionality of the channel feature map. After 

being activated by the ReLU function, the weights of channel 

attention are obtained by the second 1×1 convolution and the 

Sigmoid function. Finally, the weights are multiplied by the 

input features to obtain the weighted feature map. To reduce 

the number of weights in network training and maintain the 

lightweight nature of the network, the i-th HFFB weights of 

the upper and lower branches are shared, expressed as: 

1 2, ,

HFFB HFFB
( ) ( ), , , ,U i D if f i n =  = . 

2.2. Hybrid Feature Fusion Module (HFBB) 

The Hybrid Feature Fusion Block (HFFB) integrates the 

ideas of attention mechanism, dense connection, Transformer, 

and network lightweighting. It designs multiple densely 

connected Attention Feature Blocks (AFB), lightweight 

Transformer modules, and HFRBs[22] to achieve the 
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extraction of local and global feature information, as well as 

the enhancement of information in the high-frequency region. 

The specific structure of the HFFB is shown in Figure 3. 

To enhance the capability of local feature extraction by 

integrating channel attention and enhanced spatial attention, 

Attention Feature Block (AFB) is designed. To maintain the 

lightweight nature of the network model, a 1 × 1 group 

convolution is introduced before the AFB to halve the number 

of channels, thereby reducing the number of parameters. 

Furthermore, to achieve deep fusion of multi-level feature 

information, the features extracted by all AFB are densely 

connected. 

 
Figure 3. Structure of HFFB 

Furthermore, to capture richer global feature information 

while maintaining a lightweight design, LCT employs a 

lightweight Transformer architecture based on depthwise 

separable convolutions. Additionally, to enhance 

compensation for high-frequency region details, a High-

Frequency Residual Block (HFRB) is introduced in the 

residual connections. 

3. Lightweight Transformer Module  

Unlike CNN architectures, Transformers leverage the self-

similarity properties of images and employ self-attention 

mechanisms to capture global information. However, due to 

the inner product operations, Transformers face challenges 

related to high memory consumption and significant GPU 

resource demands. To address this, LCT designs a lightweight 

Transformer module based on the cross-channel covariance 

matrix of self-attention and the GELU activation function. 

The specific structure is illustrated in Figure 4. 

For an input feature with a kernel size of k × k and C 

channels (where the number of input and output channels 

remains the same), the parameter count C of a standard 

convolution is k × k × C × C. In contrast, depthwise 

separable convolution consists of a depthwise convolution 

(with a kernel size of k × k × 1 per channel) ollowed by a 

1 × 1 point convolution. The number of parameters for 

depthwise convolution and point convolution are k × k × 1 

× C and 1 × 1 × C × C. respectively, that is:  

2

1 1 1 1 1dsc k k C C C

c k k C C C k

   +   
= = +

  
. 

 
Figure 4. Structure of lightweight Transformer block 

From the above formula, it can be seen that the number of 

parameters of the depthwise separable convolution kernel is 

approximately 
2

1

k
  of that of the ordinary convolution 

kernel, which greatly reduces the number of parameters. 

Existing Transformers use Softmax as the activation 

function, retaining the similarity of all tokens between the 

query (Q) and the key (K) for feature aggregation. However, 

not all tokens in Q are related to the tokens in K, and using all 

similarities does not effectively promote feature aggregation. 

Considering that the GELU function has better sparsity 

than Softmax, this paper adopts GELU as the activation 

function for generating self-attention, so that pixels in sparse 

regions can interact and select the pixels with the highest 

similarity, thereby effectively promoting feature aggregation. 

In summary, the Transformer module utilizes depthwise 

separable convolution and computes the covariance matrix of 

self-attention across channels, effectively reducing the 

number of parameters and computational cost, thus achieving 

lightweight networks. 

4. Experiments and results analysis  

4.1. Datasets and Metrics 

In this work, we select the first 800 images from the 

DIV2K[23] dataset and apply data augmentation techniques 

such as rotation and horizontal flipping to construct the 

training set. Meanwhile, the Set5[24], Set14[25], 

BSD100[26], Urban100[27], and Manga109[28] datasets are 

used as test sets. 
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The reconstruction performance of the network is 

evaluated using Peak Signal-to-Noise Ratio (PSNR) and 

Structural Similarity Index (SSIM)[29]. Additionally, the 

model complexity is assessed using the number of parameters 

and Floating-Point Operations per Second (FLOPs). 

4.2. Comparison of Different Activation 

Functions in Transformer 

Existing Transformer models primarily use Softmax as the 

activation function to generate self-attention. However, 

different activation functions may influence self-attention 

generation in various ways. For instance, DLGSANet 

(Effective Light-weight Dynamic Local and Global Self-

Attention Network) employs ReLU as the activation function, 

effectively filtering out redundant self-attention information 

and achieving better reconstruction performance compared to 

Softmax. 

In the experiment, we compare the performance of Softmax, 

Sigmoid, ReLU, and GELU activation functions across five 

datasets. The results are presented in Table 1, where bold 

numbers indicate the best values. 

From the table, it is evident that using GELU as the 

activation function for self-attention in the Transformer 

consistently achieves the highest PSNR and SSIM values 

across almost all datasets. The reason for this improvement 

lies in the smoothness of the Gaussian Error Linear Unit 

(GELU) compared to ReLU and other activation functions. 

Its smoother nature allows for faster convergence during 

training and enhances feature aggregation, leading to 

improved reconstruction performance. 

4.3. Comparisons with Advanced SISR Models 

we conduct a quantitative comparison with several state-

of-the-art super-resolution methods, including SRCNN 

(Super-Resolution CNN), ESPCN (Efficient Sub-Pixel CNN), 

Lap-SRN, DRCN, MADNet, LCRCA, VLESR, HNCT, IDN 

(Information Distillation Network), PAN (Pixel Attention 

Network), MRMDN (Model-Driven Recursive Multi-Scale 

Denoising Network), SMSR (Sparse Mask Super-Resolution), 

RiRSR (ResNet in ResNet Architecture), and the Lightweight 

Inverse Separable Residual Information Distillation Network 

(LIRDN). 

When the super-resolution image reconstruction scale 

factor is set to 3×, LCT achieves the best reconstruction 

performance across all five datasets. The primary reason for 

this superiority lies in LSCT's effective integration of CNN 

and Transformer, leveraging their distinct feature extraction 

capabilities. The symmetric network structure enhances the 

ability to capture both local and global features, while the 

introduction of the High-Frequency Residual Block (HFRB) 

further improves the extraction of high-frequency region 

details, leading to superior reconstruction quality. 

Figure 5 presents the comparison results when the image 

reconstruction scale factor is set to 2×. In the high-resolution 

(HR) image, the diagonal pattern in the lower half is oriented 

toward the bottom-right. 

The reconstructed images from ESPCN, DRCN, RiRSR, 

and HNCT exhibit a grid-like artifact in this region. 

Meanwhile, the reconstructions from MRMDN and VLESR 

show the diagonal pattern incorrectly oriented toward the 

bottom-left. In contrast, only LCT successfully restores the 

diagonal pattern with the correct orientation and clarity, 

demonstrating its superior ability to preserve structural details. 

 
Figure 5. Visual comparison with other SISR models. It is obvious 

that LSCT can reconstruct correct photorealistic SR images. 

Figure 6 presents the comparison results for image 

reconstruction with a scaling factor of 3×. The high-resolution 

(HR) image exhibits a grid-like texture, while other networks 

suffer from varying degrees of distortion and blurring in the 

right half of the reconstructed images. 

In contrast, LCT successfully reconstructs more detailed 

and sharper textures. The fundamental reason for this 

improvement lies in LCT's ability to effectively combine the 

advantages of both CNN and Transformer architectures. 

Additionally, the introduction of HFRB enhances the 

network’s focus on high-frequency region details, enabling 

the reconstructed images to retain clearer textures and finer 

details. 

 
Figure 6. Visual comparison with other SISR models, LSCT 

reconstructs more and clearer textures. 

4.4. Comparison on Computational Cost 

we provide a more detailed comparison of each model. 

LCT achieves the highest PSNR while utilizing fewer 

parameters. 

The key reason behind this efficiency is LCT’s lightweight 

design, which is achieved through depthwise separable 

convolutions and weight sharing. Additionally, LCT 

effectively integrates both local and global information 

during the reconstruction process while enhancing high-

frequency region features. This balanced approach allows 

LCT to optimize both model complexity and reconstruction 

performance, achieving superior results with reduced 

computational cost. 

Table 1. Comparison of the complexity of each network 

Network 

Model 

Parameter 

quantity/K 
FLOPs/G PSNR/dB SSIM 

DRCN 1774 9788.7 30.75 0.9133 

MRMDN 1380 499.3 32.11 0.9283 

MADNet 878 187.1 31.59 0.9234 

SMSR 985 224.1 32.19 0.9284 

LIRDN 1171 221.4 32.22 0.9287 

LSCT 842 423.1 32.4 0.9302 

5. Conclusion  

To address the challenges of large network parameters and 

high computational costs in existing image super-resolution 

reconstruction networks, this paper proposes a lightweight 
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CNN-Transformer-based image super-resolution 

reconstruction method (LCT). 

First, a CNN-Transformer module is designed using weight 

sharing, where the Channel Attention (CA) mechanism is 

employed to fully integrate extracted information, enhancing 

the reconstruction of both local and global features. By 

leveraging depthwise separable convolutions and computing 

the self-attention cross-channel covariance matrix, LCT 

effectively reduces the number of Transformer parameters, 

lowering computational costs and memory consumption, 

thereby achieving a lightweight network design. 

To mitigate the issue of high-frequency information loss 

during the Transformer’s feature extraction process, a High-

Frequency Residual Block (HFRB) is introduced to focus on 

high-frequency region details, capturing more texture 

information. Furthermore, this paper explores the impact of 

activation function selection in Transformer-based self-

attention generation and finds that the GELU activation 

function effectively promotes feature aggregation and 

enhances performance. 

Extensive experiments demonstrate that LCT can 

effectively reconstruct images with richer textures and 

sharper edge details while maintaining a lightweight network 

structure. However, from a visual perspective, LCT-

reconstructed high-resolution images still exhibit artifacts and 

slight blurring. Future research will further address these 

limitations, striving to enhance the quality and visual fidelity 

of reconstructed images while maintaining network efficiency. 
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